PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | nr 656 | 226
Tytuł artykułu

Statystyczne planowanie eksperymentów w zagadnieniach regresji w warunkach małej próby

Autorzy
Treść / Zawartość
Warianty tytułu
Statistical Designing of Experiments in Regression Problems Under Small Sample Conditions
Języki publikacji
PL
Abstrakty
Omówiono zagadnienie dotyczące nowoczesnej teorii planowania eksperymentów optymalnych ze względu na wybrane kryterium optymalności.
EN
This monograph contains the essential results of optimal experimental design theory together with a significant number of rather new tools, which are important in applications. In chapter 1 the regression problem is formulated, the experiment for this kind of problem is defined and some introductory examples of experimental design profits are given. In chapter 2 the general linear regression model is described in case of one or more depending variables. The optimal properties of ordinary and generalized least squares method (MLS) are indicated to support MLS as estimation method in linear regression models. Chapter 3 includes a systematic presentation of optimal discrete design theory starting from such notions as experimental region, region of forecast, experimental design, discrete design, information matrix, optimality criterion, optimal design, etc. The equivalence theorem for general convex criterion is given in a form allowing immediate modifications for A-, C-, D-, E-, G-, M- and V-criterion. Some relations between optimal discrete designs and optimal experimental designs are outlined too. The concepts of design efficiency and quasi-optimal design can be found in chapter 4. Several valuable methods of constructing optimal or quasi-optimal designs are given there. Especially various iterative methods and iterative computer algorithms are described, followed by presentation of methods based on designs, which are invariantly optimal under change of experimental (forecast) region or optimality criterion. In chapter 5 one can find a broad review of optimal discrete designs and optimal or quasi-optimal experimental designs for MLS-estimation in case of linear, quadratic, polynomial and trigonometric regression functions of one or more regressors (factors) and several optimality criteria. In a paragraph summaryizing this chapter the benefits from applying optimal designs are outlined. The last chapter 6 deals with experimental design in nonlinear regression models. The main idea of this chapter is to introduce a new kind of optimality criteria for such models. The author calls them relative criteria of global (or local) optimality. The properties of such relative criteria are discussed there. Using relative criteria of global optimality one can obtain that an optimal design coincides in special cases with e.g. mean rank design, minimax rank design, highest mean efficiency design or maximin efficiency design. (original abstract)
Twórcy
Bibliografia
  • Achnazarowa S.Ł., Kafarow W.W. (1982): Optymalizacja eksperymentu w chemii i technologii chemicznej. Warszawa: WNT.
  • Agaian S.S. (1985): Hadamard matrices and their applications. Berlins Springer-Verlag.
  • Aitken A.C. (1935): On least squares and linear combination of observations. Proc. of the Royal Society of Edinburgh 55 s. 42-48.
  • Alfonso F.J. (1965): Tablas para diseno optlmo minimax en prediccion polinomlal. Universidad de Buenos Aires, Publ. No. 9.
  • Anderson T.W., Dasgupta S. (1963): Some inequalities on characteristic roots of matrices. Biometrika 50 s. 522-524.
  • Atkinson A.C. (1973): Multifactor second order designs for cuboidal regions. Biometrika 60 s. 15-19.
  • Atkinson A.C. (1988): Recent developments in the methods of optimum and related experimental designs. Internat. Statist. Review 56 s. 99-115.
  • Atwood C.L. (1969): Optimal and efficient designs of experimental" Ann'. ' Math, "Statist. 40 s. 1570-1602.
  • Atwood C.L. (1973): Sequences converging to D-optimal designs of experiments. Ann. Statist. 1 s. 342-352.
  • Atwood C.L. (1976): Convergent design sequences for sufficiently regular optimality criteria. Ann. Statist. 4 s. 1124-1138.
  • Bandemer H. (1975): Optimale Versuchsplanung aIs Entscheidungsproblem. Freiberger Forscftungshefte D 88 s. 79- -100.
  • Bandener H., Bellatann A. (1976): Statistische Versuchsplanung. Leipzig: Teubner Verlagsgesellschaft.
  • Bandemer H. i inni (1977): Theorie und Anwendung der optimalen Versuchsplanung I, Handbuch zur Theorie. Berlins Akademie-Verlag.
  • Bandemer H., Nather W. (1980): Theorie und Anwendung der optimalen Versuchsplanung II, Handbuch zur Anwendungen. Berlin: Akademie-Verlag.
  • Bartosiewicz S. (1974): Prosta metoda wyboru zmiennych objaśniających w modelu ekonometrycznym. Prace Naukowe WSE we Wrocławiu 43 s. 93-101.
  • Bartoszewicz J. (1989): Wykłady ze statystyki matematycznej. Warszawa: PWN.
  • Box G.E.P., Behnken D.W. (1960): Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. Ann. Math. Statist. 31 s. 838-864.
  • Box G.B.P., Draper N.R. (1959): A basis for the selection of a response surface design. Journ. American Statist. Assoc. 54 s. 622-653.
  • Box G.B.P., Hunter W.G. (1965): Sequential design of experiments for nonlinear models. Proceedings IBM Scientific Computing Symp. on Statist. s. 113-137.
  • Box G.B.P., Wilson K.B. (1951)i on the experimental attainment of optimum conditions. Journ. Royal Statist. Soc. ser. B 13 s. 1-45.
  • Bohning D. (1986): A vertex-exchange-method in D-optimal design theory. Metrika 33 s. 337-347.
  • Chadjipantelis T., Kounias S., Moyssiadis C. (1987): The maximum determinant of 21 x 21 (+1,-1) matrices and D-optimal designs. Journ. Statist. Planning and Inference 16 s. 167-178.
  • Cheng C.-S. (1980): Optimality of some weighing and 2n fractional factorial designs. Ann. Statist. 8 s. 436-446.
  • Chernoff H. (1953): Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 s. 586-602.
  • Cochran W.G., Cox G.M. (1957): Experimental designs. New York: J. Wiley.
  • Constantino K.B., Lim Y.B., Studden W.J. (1987): Admissible and optimal exact designs for polynomial regression. Journ. Statist. Planning and Inference 16 s. 15-32.
  • Cook R.D., Nachtsheim C.J. (1980): A comparison of algorithms for constructing exact D-optimal designs. Technometrics 22 s. 315-324.
  • Cook R.D., Nachtsheim C.J. (1982): Model robust, linear - optimal designs. Technometrics 24 s. 49-54.
  • Cox D.R. (1958): Planning of experiments. New York: J. Wiley.
  • Cox D.R., Snell B.J. (1974): The choice of variables in observational studies. Journ. Royal Statist. Soc. ser. C 23 s. 51-59.
  • Cramer H. (1958): Metody matematyczne v statystyce. Warszawa: PWN.
  • De Groot M.H. (1981): Optymalne decyzje statystyczne. Warszawa: PWN.
  • Deming W.B. (198?;t Quality, productivity and competitive position. Cambridge/MA: Massachusetts Institute of Technology.
  • Deming W.E. (1986): Out of the crisis. Cambridge/MA: Massachusetts Institute of Technology.
  • Donev A.N., Atkinson A.C. (1988): An adjustment algorithm for the construction of exact D-optimum experimental designs. Technometrics 30 s. 429-433.
  • Draper N., Smith H. (1973): Analiza regresji. stosowana. Warszawa: PWN.
  • Ehlich E. (1964a): Determinantenabschätzungen für binäre Matrizen. Math. Zeitschrift. 83 s. 123-132.
  • Ehlich H. (1964b): Determinantenabschätzungen für binäre Matrizen mit n = 3 mod 4. Math. Zeitschrift 84 s. 438-447.
  • Ehlich H., Seller K. (1962): Binäre Matrizen. Zeitschrift für Angew. Math. u. Mech. 42 T20-T21.
  • Eliving G.B. (1952): Optimum allocation in linear regression theory. Ann. Math. Statist. 23 s. 255-262.
  • Evans J.W. (1979): Computer augmentation of experimental design to maximize (X'X). Technometrics 21 s. 321-330.
  • Evans J.W., Manson A.R. (1978): Optimal experimental designs in two dimensions using minimum: bias estimation. Journ. American Statist. Assoc. 73 s. 171-176.
  • Farrell R.H., Kiefer J., Walbran A. (1967): Optimum multivariate designs. Proc. Fifth Berkeley Symp. 1 s. 113-138.
  • Fedorov W.W. (1972): Theory of optimal experimental design. New York: Academic Press.
  • Fedorow W.W. (1971): Planirovanlje eksperimentov pri linlejnych kriteriach optimalnosti. Teor. weroiatn. i jejo primen, 16 s. 189-195.
  • Finney D.J. (1960): An introduction to the theory of experimental design, Chicago: The Univ. of Chicago Press.
  • Fisher R.A. (1922): On the mathematical - foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London ser. A 222 s. 309-368.
  • Fisher R.A. (1926): The arrangement of field experiments. Journal of the Ministry of Agriculture 33 s. 503-543.
  • Fisher R.A. (1951): The design of experiment. Edinburgh: Oliver & Boyd.
  • Frisch R. (1929): Correlation and scatter in statistical variables. Nord. Statist. Tildskr. 8 s. 36.
  • Gaffke N., Krafft O. (1982): Exact D-optimum designs for quadratic regression. Journ. Royal Statist. Soc. ser. B 44 s. 394-397.
  • Galil Z., Kiefer J. (1977a): Comparison of Box-Draper and D-optimum des ions for experiments with mixtures. Technometrics 19 s. 441-444.
  • Galil Z., Kiefer J. (1977b): Comparison of design for quadratic regression on cubes. Journ. Statist. Planning and Inference 1 s. 121-132.
  • Galil Z., Kiefer J. (1977c): Comparison of rotatable designs for regression on balls, I (quadratic). Journ. Statist. Planning and Inference 1 s. 27-40.
  • Galil Z., Kiefer J. (1977d): Comparison of simplex designs for quadratic mixture models. Technometrics 19 s. 445-453.
  • Galil Z., Kiefer J. (1979): Extrapolation designs and -optimum designs for cubic regression on the q-ball. Journ. Statist. Planning and Inference 3 s. 27-38.
  • Galil Z., Kiefer J. (1980a): D-optimum weighing designs. Ann. Statist. 8 s. 1293-1306.
  • Galii Z., Kiefer J. (1980b): Optimum weighing designs. Recent Developments in Statistical Inference and Data Analysis. Amsterdam: North-Holland s. 183-189.
  • Galii Z., Kiefer J. (1980c): Time- and space-saving computer methods, related to Mitchell's DETMAX, for finding D-optimum designs. Technometrics 22 s. 301-313.
  • Galii Z., Kiefer J. (1982): Construction methods for D-optimum weighing designs when n = 3 (mod 4). Ann. Statist. 10 s. 502-510.
  • Galii Z., Kiefer J. (1983): Comparison of designs equivalent under one or two criteria. Journ. Statist. Planning and Inference 8 s. 103-116.
  • Ghosh S. (1990): Statistical design and analysis of industrial experiments. New York & Basel: M. Dekker.
  • Grabiński T., Wydymus S., Zeliaś A. (1982): Metody doboru zmiennych w modelach ekonometrycznych. Warszawa: PWN.
  • Guest P.G. (1958): The spacing of observations in polynomial regression. Ann. Math. Statist. 29 s. 294-299.
  • Hartley H.O. (1959): Smallest composite designs for quadratic response surfaces. Biometrics 15 s. 611-624.
  • Hedayat A., Wallis W.D. (1978): Hadamard matrices and their applications. Ann. Statist. 6 s. 1184-1238.
  • Hellwig Z. (1972): The selection of a set of "core" indicators of socio-economic development. Paris: UNESCO.
  • Hellwig Z. (1985): O jakości modelu ekonometrycznego. Część I. Identyfikacja. Przegl. Statyst. XXXII s. 3-23.
  • Hocking R.R. (1976): The analysis and selection of variables in linear regression. Biometrics 32 s. 1-49.
  • Hoel P.G. (1958): Efficiency problems in polynomial estimation. Ann. Math. Statist. 29 s. 1134-1145.
  • Hoel P.G. (1965): Minimax designs in two dimensional regression. Ann. Math. Statist. 36 s. 1097-1106.
  • Hoel P.G., Levine A. (1964): Optimal spacing and weighing in polynomial prediction. Ann. Math. Statist. 35 s. 1553-1560.
  • Hotelling B. (1944): Some improvements in weighing and other experimental techniques. Ann. Math. Statist. 15 s. 297-306.
  • Huber P. (1975); Robustness and designs. A Survey of Statistical Design and Linear Models. Amsterdam: North Holland s. 287-301.
  • Jennrich R.J. (1969): Asymptotic properties of nonlinear least squares estimators. Ann. Math. Statist. 40 s. 633-643.
  • Johnson M.E., Nachtsheim C.J. (1983): Some guidelines for constructing exact D-optimal designs on convex design spaces. Technoswtrics 25 s. 271-277.
  • Jung W. (1971): G-optimale Versuchsplanung für die Regressionsgerade y(x) = 0i + 02X. Biometr. Zeitschr. 13 s. 31-47.
  • Jung W. (1975): G-optimale Versuchsplanung auf dem Würfel und auf der Kugel, Freiberger Forachungshefte D 89 s. 11-37.
  • Kacprzyński B. (1974): Planowanie eksperymentów. Podstawy matematyczne. Warszawa: WNT.
  • Karlin S., Studden W.J. (1966a): Optimal experimental designs. Ann. Math. Statist. 37 s. 783-815.
  • Karlin S., Studden W.J. (1966b): Tchebycheff systems. New York: Interscience.
  • Kiefer J. (1958): On the nonrandomized optimality and the randomized nonoptimality of symmetrical designs. Ann. Math. Statist. 23 s. 675-699.
  • Kiefer J. (1959): Optimum experimental designs. Journ. Royal Statist. Soc. ser. B 21 s. 272-319.
  • Kiefer J. (1961a): Optimum designs in regression problems II. Ann. Math. Statist. 32 s. 298-325.
  • Kiefer J. (1961b): Optimum experimental designs V, with applications to systematic and rotatable designs. Proc. Fourth Berkeley Symp. 1 s. 381-405.
  • Kiefer J. (1962): An extremum result. Canadian Journ. Math. 14 s. 597-601.
  • Kiefer J. (1974): General equivalence theory for optimum, designs (approximate theory). Ann. Statist. 2 s. 849-879.
  • Kiefer J. (1975a): Construction and optimality of generalized Youden designs. A Survey of Statistical .Design and Linear Models. Amsterdam: North-Holland s. 333-353.
  • Kiefer J. (1575b): Optimal design: Variation in structure' and performance under changes of criterion, Biometrika 62 s. 277-288.
  • Kiefer J., Wolfowitz J. (1959): Optimum designs in regression problems. Ann. Math. Statist. 30 s. 271-294.
  • Kiefer J., Wolfowitz J. (1960): The equivalence of two extremum problems. Canadiern Journ. Math. 12 s. 363-366.
  • Kleijnen J.P.C. (1975): Screening designs for poly-factor experimentation. Technometrics 17 s. 487-493.
  • Kono K. (1962): Optimum designs for quadratic regression on k-cube. Mem. Fac. Sci. Kyuahu Univ. A 16 s. 114-122.
  • Kounias S., Chadjipantelis T. (1983): Some D-optimal weighing designs for n = 3 (mod 4). Journ. Statist. Planning and Inference 9 s. 117-127.
  • Krafft O. (1978): Lineare statistische Modelle und optimale Versuchspläne, Göttingen u. Zürich: Vandenhoeck & Ruprecht.
  • Kunert J. (1983): Optimal design and refinement of the linear model with applications to repeated measurements designs. Ann. Statist. 11 s. 247-257.
  • Kuratowski K. (1955): Wstęp do teorii mnogości i topologii. Warszawa: PWN.
  • Lehmann S.L. (1968): Testowanie hipotez statystycznych. Warszawa: PWN.
  • Lehmann E.L., Scheffe H. (1950): Completeness, similar regions and unbiased estimation. Sankhya 10 s. 305-340.
  • Levine A. (1966): A problem in minimax variance polynomial extrapolation. Ann. Math. Statist. 37 s. 898-903.
  • Li K.C. (1984): Robust regression designs when the design space consists of finitely many points. Ann. Statist. 12 s. 269-282.
  • Li K.C., Notz W. (1982): Robust designs for nearly linear regression. Journ. Statist. Planning and Inference 6 s. 135-151.
  • Lochnar R.H., Matar J.E. (1990): Designing for quality, an introduction to the best of Taguchi and western methods of statistical experimental design. Milwakue: ASQC Quality Press.
  • Logothetis N., Wynn H.P. (1989): Quality through design. Oxfords Clarendon Press.
  • Lucas J.N. (1974): Optimum composite designs. Technometrics 16 s. 561-567.
  • Lucas J.M. (1976): Which response surface design is best. Technometrics 18 s. 411-417.
  • Malinvaud E. (1970): The consistency of nonlinear regression. Ann. Math. Statist. 41 s. 956-969.
  • Malutow M.B., Fedorow W.W. (1971): O płanach wzvieszennoj polinomialnoj regressii s minimalnoj sredniej dispersiej. Teor. werojatn. i jejo primen. 16 s. 734-738.
  • Mańczak K. (1976): Technika planowania eksperymentu. Warszawa: WNT.
  • Marcus M.B., Sacks J. (1978): Robust designs for regression problems. Statistical Decision Theory and Related Topics. New York: Academic Press tom II s. 245-268.
  • Mitchell T.J. (1974a): An algorithm for the construction of "D-optimal" experimental designs. Technometrics 16 s. 203-210.
  • Mitchell T.J. (1974b): Computer construction of "D-optimal" first-order designs. Technometrics 16 s. 211-220.
  • Mitchell T.J., Bayne C.K. (1978): D-optimal fractions of three-level factorial designs. Technometrics 20 s. 369-383.
  • Mood A.M. (1946): On Hotelling's weighing problem. Ann. Math. Statist. 17 s. 432-446.
  • Moyssiadis C., Kounias S. (1983): Exact D-optimal N observations 2k designs of resolution III, when N = 1 or 2 mod 4. Math. OF Statist, ser. Statist. 14 s. 367-379.
  • Hagel S. (1978): Goodness of exact experimental designs with respect to a certain family of criteria. Math. OF Statist. ser. Statist, 9 s. 519-523.
  • Nather W. (1975a): Pptimalitatseigenachaften won Schätzungen nach der Methode der kleinsten Quadrate - ein Beitrag zur optimalen versuchsplanung im linearen Regressionsmodell. Freiberger Forschungshefte D 92 s. 13-56.
  • Näther W. (1975b): Semi-orderings between distribution functions and their application to robustness of parameter estimators. Math. OF Stat. 6 s. 13-56.
  • Paley R.E.A.C. (1933): On orthogonal matrices. Journ. Math, and Phys. 12 s. 311-320.
  • Payne S.E. (1974 ): On maximizing det(At A). Discrete Math. 10 s. 145-158.
  • Pazman A. (1974): A convergence theorem in the theory of D-optimum experimental designs. Ann. Statist. 2 s. 216-218.
  • Pesotchinsky L. (1975): D-optimum and quasi-D-optimum second-ordei-designs on a cube. Biometrika 62 s. 335-340.
  • Pesotchinsky L. (1978): O-optimal second order designs for symmetric regions. Journ. Statist. Planning and Inference 2 s. 173-188.
  • Pesotchinsky L. (1982): Optimal robust designs: linear regression in R. Ann. Statist. 10 s. 511-525.
  • Pluta W. (1972): Metoda wyboru zmiennych objaśniających w modelach symptomatycznych. Przegl. Statyst. XIX s. 153-162.
  • Powell M.J.D. (1964): An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7 s. 155-162.
  • Rao C.R. (1973): Unified theory of least squares. Communications in Statistics 1 s. 1-8.
  • Rao C.R. (1982): Modele liniowe statystyki matematycznej. Warszawa: PWN.
  • Rao C.R., Mitra S.K. (1971): Further contribution to the theory of generalized inverse of matrices and its applications. Sankhya A 33 s. 289-300.
  • Rechtschaffner R.L. (1967): Saturated fractions of 2n and 3n factorial designs. Tectonometries 9 s. 569-575.
  • Ryan T.P. (1989): Statistical methods for quality improvement. New York: J. Wiley.
  • Sacks J., Ylvisaker D. (1984): Some model robust designs in regression. Ann. Statist. 12 s. 1324-1348.
  • Schaffe H. (1958): Experiments with mixtures. Journ. Royal Statist. Soc. ser. B 20 s. 344-360.
  • Scheffe H. (1963): The simplex-centroid design for experiments with mixtures. Journ. Royal Statist. Soc. ser. B 25 s. 235-263.
  • Silvey S.D. (1980): Optimal design. New York: Chapman & Hall.
  • Silvey S.D., Titterington D.M. (1973): A geometric approach to optimal design theory. Biometrika 60 s. 21-32.
  • Stanisz T. (1986): Funkcje jednej zmiennej w badaniach ekonomicznych. Warszawa: PWN.
  • Steinberg D.M. Hunter W.G. (1984): Experimental design - review and comment. Technometrics 26 8. 71-97.
  • Stoyan D. (1972): Monotonieeigenschaften stochastischer Modelle. Zeitschrift für Angew. Math. u. Mech. 52 s. 23-30.
  • Studden W.J. (1968): Optimal designs on Tchebycheff points. Ann. Math. Statist. 39 s. 1435-1447.
  • Studden W.J. (1982): Some robust-type D-optimal designs in polynomial regression. Journ. American Statist. Assoc. 77 s. 916-921.
  • Taguchi G., Wu Y. (1979): Introduction to off-line quality control. Central Japan Quality Control Association.
  • Theil H. (1979): Zasady ekonometrii. Warszawa: PWN.
  • Tsay J. (1976): On the sequential construction of D-optimal designs. Journ. American Statist. Assoc. 71 s. 671-674.
  • Uranisi J. (1964): Optimum design for the special cubic regression on the q-simplex. Math. Reports Kyushu Univ. 1 s. 7-12.
  • Van Schalkwyk D.J. (1971): On the design of mixture experiments. Ph.D. thesis University of London.
  • Wawrzynek J. (1976): Optymalne plany eksperymentalne dla zagadnień regresji liniowej. Przegl. Statyst. XXIII s. 349-362.
  • Wawrzynek J. (1977a): Uwagi o efektywności planowania eksperyment ów. Przegl. Statyst. XXIV s. 83-89.
  • Wawrzynek J. (1977b): Wybrane zagadnienia sekwencyjnego planowania eksperymentów. Prace Naukowe ITNiNM Politechniki Wrocławskiej 12 ser. 4 s. 12-13.
  • Wawrzynek J. (1979): Plany eksperyment ów dla estymacji liniowej funkcji regresji dwu zmiennych. Przegl. Statyst. XXVI s. 111-125.
  • Wawrzynek J. (1980a): Planowanie doświadczeń dla aproksymacji funkcji jednej zmiennej za pomocą funkcji o segmentach liniowych. Prace Naukowe AE we Wrocławiu 165 s. 71-78.
  • Wawrzynek J. (1980b): Über Versuchsplanung zur Funktionschätzung mit Anwendung von segment-linearen Funktionen. Mathematik und Kybernetik in der Ökonomie VI. Rostock s. 35.
  • Wawrzynek J. (1981): O asymptotycznie optymalnych planach eksperymentu dla wielozmiennej regresji liniowej. Przegl. Statyst. XXVIII s. 271-282.
  • Wawrzynek J. (1982): Zur Genauigkeit der Funktionschätzung mit Anwendung von segment-linearen Funktionen. Mathematik und Kybernetik in der Ökonomie VII. Halle-Wittenberg Sektion 2/2b 8. 133-134.
  • Wawrzynek J. (1984): O pewnej mierze dokładności aproksymacji funkcji jednej zmiennej przez funkcję o segmentach liniowych. Prace Naukowe AE we Wrocławiu 285 s. 155-159.
  • Wawrzynek J. (1985a): Recenzja książki: Achnazarowa S. i Katarów W.: Optymalizacja eksperymentu w chemii i technologii chemicznej. Matematyka Stosowana XXVI s. 210-225.
  • Wawrzynek J. (1985b): Some summarizing remarks concerning optimal experimental designs for multivariate linear response surface. Prace Naukowe AE we Wrocławiu 301 s. 154-166.
  • Wawrzynek J. (1987): Some remarks in relation to construction of optimal exact designs for multivariate linear regression. Methods of Operations Research 58 s. 583-590.
  • Wawrzynek J. (1989): Some simple applicable modifications of the concept of global optimal designing. 14. Symp. Operations Research. Ulm s. 235.
  • Wawrzynek J. (1990)t O relatywnych kryteriach globalnej optymalności planów eksperymentu w nieliniowych modelach regresji. Prace Naukowe AB we Wrocławiu 513 s. 217-224.
  • Wawrzynek J. (1991): On the concept of relative global optimality criteria of experimental designs for nonlinear regression models. Prace Naukowe AB we Wrocławiu 580 s. 187-195.
  • Webb S.R. (1971): Small incomplete factorial experiment designs for two- and three-level factors. Technometrics 13 s. 243-256.
  • Welch W.J. (1982): Branch-and-bound search for experimental designs based on D optimality and other criteria. Technometrics 24 s. 41-48.
  • Welch W.J. (1984): Computer-aided design of experiments for response estimation. Technometrics 26 s. 217-224.
  • Westlake W.J. (1965): Composite designs based on irregular fractions of factorials. Biometrics 21 s. 324-336.
  • Whittle P. (1973): Some general points in the theory of optimal experimental design. Journ. Royal Statist. Soc. ser. B 35 s. 123-130.
  • Wilks S.S. (1932): Certain generalizations in the analysis of variance. Biometrika 24 s. 471-494.
  • Williamson J. (1945): Determinants whose elements are 0 and 1. Amer. Math. Monthly 53 s. 427-434.
  • Wojtas M. (1964): On Hadamard's inequality for the determinants of order non-divisible by 4. Colloq. Math. 12 s. 73-83.
  • Wu C.F. (1978): Some algorithmic aspects of the theory of optimal designs. Ann. Statist. 6 s. 1286-1301.
  • Wu C.F., Wynn H.P. (1978): The convergence of general step-length algorithms for regular optimum design criteria. Ann. Statist. 6 s. 1273-1285.
  • Wynn H.P. (1970): The sequential generation of D-optimum experimental designs. Ann. Math. Statist. 41 s. 1655-1664.
  • Wynn H.P. (1972): Results in the theory and construction of D-optimum experimental designs. Journ. Royal Statist. Soc. ser. B 34 s. 133-147.
  • Wynn H.P. (1975): Simple conditions for optimum design algorithms. A Survey of Statistical Design and Linear Models. Amsterdam: North Holland s. 571-579.
  • Yang C.H. (1966a): A construction for maximal (+1,-1) matrix of order 54. Bull. Amer. Math. Soc. 72 s. 293.
  • Yang C.H. (1966b): Some designs of maximal (+1,-1) determinant of order n = 2 mod 4. Math. Comp. 20 s. 147-148.
  • Yang C.H. (1968) : On designs of maximal (+1,-1) matrices of order n = 2 mod 4. Math. Comp. 22 s. 174-180.
  • Zieliński R. (1982): Wybrane zagadnienia optymalizacji statystycznej. Warszawa: PWN.
  • Zieliński R., Neumann P. (1986): Stochastyczne metody poszukiwania minimum funkcji. Warszawa: WNT.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000000000156

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.