PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | nr 4 | 139--148
Tytuł artykułu

Certainty And Uncertainty Versus Precision And Vagueness

Warianty tytułu
Pewność i niepewność kontra precyzja i nieostrość
Języki publikacji
EN
Abstrakty
Przedstawiono, niepodzielany przez wiŠkszość autorów zajmujących się zbiorami rozmytymi, pogląd, że niepewność i nieostrość są to dwa istotnie różne zjawiska empiryczne i dlatego muszą być wyjaśnione lub tylko opisywane za pomocą różnych teorii: teorii prawdopodobieństwa i teorii zbiorów rozmytych. Stwierdzenia pierwszej z tych dwóch teorii są weryfikowalne w pewnym modelu, to znaczy, że stwierdzenia te mogą być prawdziwe lub fałszywe. Typowe wyrażenia zbiorów rozmytych zaś nie są interpretowalne, w sensie interpretacji semantycznej, w żadnej dziedzinie, one same stanowią raczej pewien rodzaj interpretacji. Wyrażenia takie nie są więc ani prawdziwe, ani fałszywe.
EN
In this paper it is argued that uncertainty and vagueness are two distinct empirical phenomena and they must be explored by means of two distinct theories: probability theory and fuzzy sets theory respectively. The assertions of the first theory can be verified to be true or false in some model, on the contrary, the typical expressions of fuzzy sets theory are not interpreted in any domain, they rather form a kind of interpretation.
Rocznik
Numer
Strony
139--148
Opis fizyczny
Twórcy
Bibliografia
  • [1] CALABRESE P., An algebraic synthesis of the foundation of logic and probability, Information Sci., 1987, 42, 187-237.
  • [2] DUBOIS D., PRADE H., Conditional object as nonmonotonic consequence relationships, IEEE Trans. on Systems, Man and Cybernetics, 1994, 24, 1724-1740.
  • [3] GOGUEN J.A., The logic of inexact concepts, Synthese, 1968, 19, 325-373.
  • [4] HACKING I., The emergence of probability, Cambridge University Press, New York, 1975.
  • [5] KLIR G., YUAN B., Fuzzy Sets and Fuzzy Logic, Prentice Hall, New Jersey, 1995.
  • [6] NARENS L., Abstract measurement theory, The MIT Press, 1985.
  • [7] OSTASIEWICZ W., Some philosophical aspects of fuzzy sets. Fuzzy Economic Review, 1996, 1, 3-33.
  • [8] ROBERTS F., Tolerance geometry, Notre Dame Journed of Formal Logic, 1973, 1, 68-76.
  • [9] RESCHER N., Introduction to Logic, St. Martin's Press, New York, 1964.
  • [10] SHAFER G., A mathematical theory of evidence, Princeton, New York, 1976.
  • [11] TARSKI A., Introduction to logic, Oxford University Press, New York, 1954.
  • [12] ZADEH L., Fuzzy Sets, Information and Control, 1965, vol. 8, 338-353.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000000121957

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.