PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | z. 3 | 129--139
Tytuł artykułu

Bayesowska estymacja parametrów dyskretnie obserwowanych procesów dyfuzji (na przykładzie modelu CIR)

Warianty tytułu
Bayesian Estimation of the Parameters of Discretely Observed Diffusion Processes (With an Example of the CIR Model)
Języki publikacji
PL
Abstrakty
W ninejszej pracy zaprezentowano podejście Bayesowskie do estymacji nieznanych parametrów modelu stochastycznych równań różniczkowych SRR (ang. stochastic differential equations, SRE). Problemy numeryczne tego podejścia rozwiązano przy pomocy metod Monte Carlo opartych na łańcuchach Markowa (Markov Chain Monte Carlo, MCMC). Estymacja nieznanej gęstości przejścia oparta jest na wygenerowaniu/odtworzeniu brakujących danych pomiędzy każdą parą obserwacji przy wykorzystaniu dyskretyzacji Eulera. Zaprezentowana metoda została poddana ocenie. W tym celu dokonano estymacji parametrów procesu nieliniowej dyfuzji, modelującego instrument bazowy w modelu CIR.
EN
This paper is concerned with the estimation of stochastic differential equations (SDE) when only discrete observations are available. Following Elerian, Chib, Shephard (2001) the autor presents Bayesian inference on parameters of SDE. The numerical approach is based on Monte Carlo Markov Chains (MCMC) methodology. The Euler discretization scheme is employed to approximate the likelihood function. The CIR model is used as an example of an application of the method.
Rocznik
Tom
51
Numer
Strony
129--139
Opis fizyczny
Twórcy
Bibliografia
  • [1] Bally V, Talay D. (1995), The Law of the Euler Scheme for Stochastic Differential Equations: Error Analysis with Malliavin Calculus, Mathematics and Computers in Simulation, 38, 35-41.
  • [2] Black E, Scholes M. (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 637-654.
  • [3] Cox J.C., Ingersoll J.E., Ross S.A. (1985), A Theory of the Term Structure of Interest Rates, Econometrica, 53, 385-407.
  • [4] Elerian 0., Chib S., Shephard N. (2001), Likelihood Inference for Discretely Observed Nonlinear Diffusions, Econometrica, 69, 959-993.
  • [5] Florens-Zmirnou D. (1989), Approximate Discrete-Time Schemes for Statistics of Diffusion Processes, Statistics, 20, 547-557.
  • [6] Gallant A.R., Tauchen G.E. (1996), Which Moments, to Match, Econometric Theory, 12, 657-681.
  • [7] Gallant A.R., Long J.R. (1997), Estimating Stochastic Differential Equations Efficiently by Minimum Chi-squared, Biometrika, 84, 125-141.
  • [8] Gamerman D. (1997), Markov Chain Monte Carlo. Stochastic Simulation for Bayesian Inference, Chapman & Hall.
  • [9] Geyer C.J. (1999), Likelihood Inference for Spatial Point Processes, Current Trends in Stochastic Geometry and Applications, ed. by Barndorff-Nielsen O.E., Kendall W.S. and Lieshout M.N.M, Chapman and Hall, London.
  • [10] Hull J. (1989), Options, Futures and Other Derivative Securities, Prentice Hall, New York.
  • [11] Jajuga K. (1999), Modele dynamiczne w analizie instrumentów finansowych, Dynamiczne Modele Ekonometryczne, Materiały zgłoszone na VI Ogólnopolskie Seminarium Naukowe 7-9 września 1999, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
  • [12] Janicki A., Izydorczyk A. (2001), Komputerowe metody w modelowaniu stochastycznym, WNT, Warszawa.
  • [13] Lamberton D., Lapeyre B. (1996), Introduction to Stochastic Calculus Applied to Finance, Chapman & Hall.
  • [14] Musiela M., Rutkowski M. (1998), Martingale Methods in Financial Modelling, Springer-Verlag, New York.
  • [15] O'Hagan A. (1994), Bayesian Inference, Halsted Press, New York.
  • [16] Oksendal B. (2000), Stochastic Differential Equation: An Introduction with Applications, Springer-Verlag, Berlin.
  • [17] Osiewalski J. (2001), Ekonometria Bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej, Kraków.
  • [18] Osiewalski J. Pipień M. (2001), Multivariate T-GARCH Models Bayesian Analysis For Exchange Rates, Materiały wygłoszone na konferencji Macromodels 2001.
  • [19] Pedersen A.R. (1995), A New Approach to Maximum Likelihood Estimation for Stochastic Differential Equations Based on Discrete Observations, Scandinavian Journal of Statistics, 22, 55-71.
  • [20] Shephard N., Pitt M.K. (1997), Likelihood Analysis of Non-Gaussian Measurement Time Series, Biometrika, 84, 653-667.
  • [21] Talay D., Tubaro L. (1990), Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Analysis and Applications 8, 94-120.
  • [22] Weron A., Weron R. (1999), Inżynieria finansowa, WNT, Warszawa.
  • [23] Wilmott P. (1998), Derivatives, The Theory and Practice of Financial Engineering, Wiley, Chichester.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000000122299

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.