Warianty tytułu
Application of High-Frequency Data in Forecasting Polish Stock Indices by Means of Stochastic Volatility Models
Języki publikacji
Abstrakty
Modele zmienności stochastycznej (SV) stanowią klasę modeli wykorzystywanych do prognozowania zmienności instrumentów finansowych. W modelach tych ewolucja zmienności jest opisywana za pomocą dwóch nieskorelowanych procesów stochastycznych. W artykule modele SV były stosowane do prognozowania dziennej zmienności indeksów Giełdy Papierów Wartościowych w Warszawie. Otrzymane prognozy odnoszone były do dziennej zmienności zrealizowanej, rozumianej jako suma kwadratów zwrotów śróddziennych. Ponadto badany był wpływ, jaki na jakość prognoz ma wprowadzenie do modeli SV dziennej zmienności zrealizowanej jako dodatkowej zmiennej objaśniającej.
Stochastic volatility (SV) models form a class of models applied to financial instrument volatility forecasting that is alternative to the one consisting of better known GARCH models. In contrast to GARCH models, the time-varying volatility in SV models is described by means of two uncorrelated stochastic processes. In this paper we apply stochastic volatility models to forecasting the daily volatility of the Warsaw Stock Exchange indices. The obtained forecasts are evaluated against the daily realized volatility understood as a sum of squared intraday returns. We also investigate the impact of entering the realized volatility as an additional explanatory variable on the quality of the forecasts. (original abstract)
Rocznik
Strony
311--328
Opis fizyczny
Twórcy
autor
Bibliografia
- Andersen Т.О., Bollerslev T. (1998), Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts, "International Economic Review", 39.
- Blair В., Poon S., Taylor S. (2001), Forecasting S&P100 Volatility: The Incremental Information Content of Implied Volatilities and High Frequency Returns, "Journal of Econometrics", 105.
- Bollerslev T. (1986), Generalized Autoregressive Conditional Heteroscedasticity, "Journal of Econometrics", 31.
- Durbin J., Koopman S.J. (2000), Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives (with dicussion), "Journal of the Royal Statistical Society", B, 62.
- Engle R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation, "Econometrica", 50.
- Ghysels E., Harvey A., Renault E. (1996), Stochastics Volatility, [w:] Maddala G., Rao C. (eds), Handbook of Statistics, 14; Statistical Methods in Finance, Norh-Holland, Amsterdam.
- Hol E., Koopman S.J. (2000), Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility, Tinbergen Institute, "Discussion Paper", 104/4.
- Hol E., Koopman S.J. (2002), Stock Index Volatility Forecasting with High Frequency Data, Tinbergen Institute, "Discussion Paper", 068/4.
- Hull J., White A. (1987), The Pricing of Options on Assets with Stochastic Volatilities, "Journal of Finance", 42.
- Koopman S.J., Hol Uspensky E. (2002), The Stochastic Volatility in Mean Model: Empirical Evidence from International Stock Markets, "Journal of Applied Econometrics", 17(6).
- Koopman S.J., Shephard N., Doornik J. (1999), Statistical Algorithms for Models in State Space Using SsfPack2.2., "Econometrics Journal", 2.
- Martens M. (2002), Measuring and Forecasting S&P500 Index-Futures Volatility Using High Frequency Data, "Journal of Futures Markets", 22.
- Melino A., Turnbull S. (1990), Pricing Foreign Currency Options with Stochastic Volatility, "Journal of Econometrics", 45.
- Osiewalski J., (2001), Ekonometria bayesowska w zastosowaniach, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000080069114