PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | nr 914 | 138
Tytuł artykułu

Kształtowanie aktywności oddechowej i kwasotwórczej Aspergillus niger podczas produkcji kwasu cytrynowego w podłożach z melasą trzcinową

Warianty tytułu
Modelling of Respiratory and Acidogenesis Activities of Aspergillus Niger during Citric Acid Production in Cane Molasses Media
Języki publikacji
PL
Abstrakty
Przedstawiono wykorzystanie podłoży naturalnych, zwłaszcza różnych melas, do produkcji kwasy cytrynowego. Autor skoncentrował się na biosyntezie kwasu cytrynowego w podłożach z melasą trzcinową oraz dokonał oceny możliwości wykorzystania aktywności oddechowej grzybni Aspergillus niger jako czynnika kontrolującego efektywność produkcji kwasu cytrynowego w podłożach z melasą trzcinową.
EN
Cane molasses is characterized as a changing and differentiating substrate promoting rather natural life of Aspergillus niger than citric acid production. Most of molasses used in experiments contained excessive amount of macro- and microelements, thus fermentation media usually did not require nitrogen, phosphorus, magnesium and potassium supplementation. A great number of nutrients in molasses media decreased effectiveness of Krebs cycle blockade and changed pathophysiological effect of citric acid overproduction into natural route of full carbohydrate oxygenation via: glycolysis, pentose phosphate, and tricarboxylic acid cycles. This phenomenon could evidently be observed in experiments where, substitution of synthetic media with white sugar for natural one with cane molasses caused sharp drops of citric acid yield from 80 to 20%. Among different factors, influencing on citric yield of fermentation with cane molasses, most significant role, played alcohols, especially methanol, which in wide range of 1 + 4 %, promoted growth of Aspergillus niger W78B acidogenic activity. It resulted mostly, from an increased resistance of mycelium, treated by methanol, to some unidentified substances contained in cane molasses, causing reduction of microorganism's acidogenesis. In fermentation in shaking culture, higher dose of methanol restricted development of biomass, but in bioreactors, no clear correlation in this matter was observed. Besides methanol, also ethanol and potassium hexacvanoferrate (II) modified Aspergillus niger activity but theirs impact on citric acid yield was no so significant as this of methyl alcohol. In further experiments was proved that optimization of medium composition is not sufficient for obtaining high yield of citric acid. Methyl alcohol, the most effective factor of citric acid overproduction control, loses this property in conditions of maximization of dissolved oxygen concentration recommended by majority authors, as favorable to high product yield. It was apparently indicated that efforts being made to maximization of culture aeration does not promote citric acid overproduction efficiency, significantly declining of microorganism's acidogenesis activity and increasing accompanying acids synthesis. It was found, that increase of Aspergillus niger W78B activity can be achieved by optimization of culture aeration with reference rather to mould's respiratory activity than to environmental conditions as e.g. dissolved oxygen concentration. Thus, intensity of respiration was controlled by limitation of the oxygen uptake rate by microorganism based on aeration and mixing rate control. Applying such method of process control was possible due to fact of high correlation between dynamics of product synthesis and difference between carbon dioxide evolution and oxygen uptake rates, what allowed to implement on-line of Aspergillus niger acidogenesis control based on continuous exhaust gasses analysis. In the growth phase, satisfying result was obtained by regulation of oxygen uptake rate at the level lower then mould's requirements for both citric acid overproduction and maximal rate of biomass growth. As a result, microorganism cells were rather developed in correlation to limited oxygen than to excessive number of nutrients contained in cane molasses. Rate of biomass growth was controlled by regulation of aeration, based on carbon dioxide evolution rate (QCO2) in the following dependence on time (t): QCO2 = (8 12)/(1 + (6000 + 8000) exp (- 0,3t)). Optimal maximum Qco2 values were in the range 8 -M2 mmol/(Lh). in the second phase of fermentation (transient phase) molds respiration was controlled by keeping of QCO2, set point values at the level 6 mmol/(Lh). In the last phase of fermentation (production phase), aeration and mixing rates were regulated on the basis of maximization of difference between carbon dioxide and oxygen uptake rates. The yield of citric acid obtained in the mentioned optimized conditions varied from 58 to 85% because of differentiation in molasses quality. Results from the laboratory were confirmed during experiments conducted in industrial scale in 15 m3 stirred tank reactors. (original abstract)
Twórcy
Bibliografia
  • Achnazarowa S.L., Kafarow W.W. (1982): Optymalizacja eksperymentu w chemii i technologii chemicznej. Warszawa: WNT.
  • Aravantinos Zafiris G., Tzia C., Oreopoulou V., Thomopoulos C.D. (1994): Fermentation of orange processing wastes for citric acid production. J. Sei. Food. Agric. (65) 117-120.
  • Avcieva P.B., Vinarov A.Ju., Gordeeva E.J. (1993): Sorbcionnaja ocistka sredypri biosinteze limonnoj kisloty. Biotechnologija (11/ 12) 42-45.
  • Awadallah R.M., Sherif M.K., Mohamed A.E., Grass F. (1984): Determination of trace elements of Egyptian cane sugar (Naga Hammady factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analyses. Int. J. Environ. Anal. Chem. 19(1) 41-53.
  • Aynsley M., Ward A.C., Wright A.R. (1990): A mathematical model for the growth of mycelial fungi in submerged culture. Biotechnol. Bioeng. (35) 820-830.
  • Baig M.A., Quadder M.A., Niazi A.H. (1972): Effect oflipids on citric acid production by Aspergillus niger. Pakistan J. Sei. Ind. 15(1/2) 58-60.
  • Berovic M. (1999): Scale-up of citric acid fermentation by redox potential control. Biotechnol. Bioeng. (5) 552-557.
  • Benuzzi D.A., Segovia R.F. (1996): Effect of the copper concentration on citric acid pro ductivity by an Aspergillus niger strain. Appl. Biochem. Biotechnol. 61(3) 393-397.
  • Bolach E., Podgórski W. (1982): Fermentacja wgłębna kwasu cytrynowego na skrobi zhydrolizowanej metodą kwas - enzym. Prace Nauk. AE Wrocław (199) 29-38.
  • Bolach E., Leśniak W., Ziobrowski J. (1985): Starch hydrolysis in citric acid fermentation. Acta Aliment. Pol. 11(1) 97-104.
  • Bradley R., Janshekar H., Sakuma Y. (1996): Chemical Economics Handbook. SRI Consulting (abstrakt).
  • Branntweinwirtschaft (1991): Melassever - brauch in der Europäischen Gemeinschaft. Branntweinwirtschaft 131(8) 122-124.
  • Cameselle C., Bohlmann J.T., Nunez M.J., Lema J.M. (1998): Oxalic acid production by Aspergillus niger. Part I: Influence of sucrose and milk whey as carbon source. Bioprocess Eng. 19(4)247-252.
  • Cargill (1996): http://www.cargill.com/todaypressrel/100796.htm.
  • Chajuss D. (1997): A novel use of soy molasses. PCT International Patent Application (abstrakt).
  • Chaudhary K., Ethiraj S., Lakshminarayana K., Tauro P. (1978): Citric acid production from Indian cane molasses by Aspergillus niger under solid - state fermentation conditions. J. Ferment. Technol. 56(5) 554-557.
  • Chen H.C. (1994): Response - surface methodology for optimizing citric acid fermentation by Aspergillus foetidus. Process Biochem. 29(5) 399-405.
  • Chen H.C. (1996): Optimizing the concentrations of carbon, nitrogen and phosphorus in a citric acid fermentation with response surface method. Food Biotechnol. 10(1) 13-27.
  • Chmiel A. (1973): Biosynteza kwasu cytrynowego metodą wgłębną. I. Aspergillus niger - "producent" kwasu cytrynowego. Przem. Ferm. Rolny 17(11-12) 29-34.
  • Chmiel A. (1974a): Biosynteza kwasu cytrynowego metodą wgłębną. II. Podłoże produkcyjne. Przem. Ferm. Rolny 18(4) 11-15.
  • Chmiel A. (1974b): Biosynteza kwasu cytrynowego metodą wgłębną. III. Parametry technologiczne. Przem. Ferm. Rolny 18(6) 25-28.
  • Chmiel A. (1975a): Niektóre aspekty biosyntezy produktów metabolizmu drobnoustrojów przemysłowych. Postępy Mikrobiol. 14(1) 35-55.
  • Chmiel A. (1975b): Kinetic studies on citric acid production by Aspergillus niger. I. Phases of mycelium growth and product formation. Acta Microbiol. Pol. (B) 7(3) 185-193.
  • Chmiel A. (1986): Oxygen limitation in citric acid biosynthesis by Aspergillus niger with the high mycelium density. Acta Microbiol. Pol. 35(3/4) 321-323.
  • Chmiel A. (1991): Biotechnologia. Podstawy mikrobiologiczne i biochemiczne. Warszawa: PWN.
  • Choe J., Yoo Y.J. (1991): Effect of ammonium ion concentration and application to fed-batch culture for overproduction of citric acid. J. Ferment. Bioeng. 72(2) 106-109.
  • Choudhary A., Pirt S.J. (1965): Metal completing as metal buffers in media for the growth of Aspergillus niger. J. Gen. Microbiol. (41) 99-107.
  • Ciedvariev L.N., Eriemina I.A. (1988): Metabolism uglevodov u griba Aspergillus niger pri dejstvii sveta. Mikrobiol. 57(3) 385-388.
  • Clark D.S. (1962): Submerged citric acid fermentation of ferro cyanide treated cane molasses. Biotechnol. Bioeng. (4) 17-21.
  • Clark D.S., Ito K., Horitsu H. (1966): Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol. Bioeng. (8) 465-471.
  • Croxatto A.R., Saitua S.B., Vargas S.F. (1968): Acido citrico. Obtencion a partir de melazas chilenas por fermentacion sumergida con Aspergillus niger. Anales de la Faculted de Qimica y Farmacia Universidad de Chille (20) 57-61.
  • Dawson M.W., Maddox I.S. (1988): Application of fed- batch culture to citric acid production by Aspergillus niger: the effects of dilution rate and dissolved oxygen tension. Biotechnol. Bioeng. (32) 220-226.
  • Dawson M.W., Maddox I.S., Brooks J.D. (1989): Evidence for nitrogen catabolite repression during citric acid production by Aspergillus niger under phosphate-limited growth conditions. Biotechnol. Bioeng. (11) 1500-1504.
  • De S.K., Srivastava A.S. (1975): Effect of ultrasonic waves on citric acid and alcoholic fermentations by Aspergillus niger and Saccharomyces cerevisiae. Sei. Cult. 41(9) 459-460.
  • Dhankhar H.S., Ethiraj S., Vyas S.R. (1974): Effect ofmethanol on citric acid production from sugar-cane molasses by Aspergillus niger. Indian J. Technol. (12) 316- 317.
  • Druri M., Żakowska Z. (1986): Wydzielanie z melasy buraczanej frakcji toksycznych dla Aspergillus niger przez ekstrakcję rozpuszczalnikami organicznymi. Przem. Ferm. Owoc. Warzyw. (3) 14-16.
  • Druri M., Żakowska Z. (1987): Untersuchung von Bestandteilen der Zuckerrübenmelasse, die auf Aspergillus niger bei der Zitronensaureproduktion toxisch wirken. Acta Biotechnol. 7(3) 275-278.
  • Druri M. (1991): Do czego może służyć melas. Gazeta Cukrownicza (3) 44-45.
  • Druri M. (1993): Mikrokomponenty melas w biotechnologii. Przem. Ferm. Owoc. Warzyw. (2) 10-11.
  • El Samragy Y.A., Khorshid M.A., Foda M.I., Shehata A.B. (1996): Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger. Int. J. Food Microbiol. 29(2/3) 411-416.
  • Eaton L.C., Tedder T.F., Ingram L.O. (1982): Effects of fatty acid composition on the sensitivity of membrane functions to ethanol in Escherichia coli. Subst. Alcohol Actions Misuse. 3(1:2)77-87.
  • Elimer E. (1985): Tłuszcz roślinny jako źródło węgla dla wzrostu i biosyntezy kwasu cytrynowego przez Aspergillus niger. Przem. Ferm. Owoc. Warzyw. (3) 24-26.
  • Elimer E. (1994): Badania nad wykorzystaniem tłuszczów roślinnych do biosyntezy kwasu cytrynowego przez Aspergillus niger. Prace Nauk. AE Wrocław (678). Monografie i Opracowania 105.
  • Esuoso K.O., Oderinde R.A., Okogun J.I. (1991): Citric acid production from imumu Cyperus esculentus and maize zea mays. J. Ferment. Bioeng. 71(3) 200-202.
  • Esuoso K.O. (1994): Influence of nitrilotriacetic acid and 8-hydroxyquinoline on the production of citric acid from molasses using Aspergillus nig&ï. J. Ferment. Bioeng. 77(6) 693-695.
  • Ettler P., Martinkova L., Ujcova E., Seichert L. (1991): Application of scale-down experiments in the study of citric acid biosynthesis. Folia Microbiol. 36(5) 493-497.
  • Faust U., Prave P. (1983): Biomass from methane and methanol. Biotechnology. Weinheim: Verlag Chemie.
  • Federici F., Petruccioli M. (1997): Immobilization of filamentous fungi: A new frontier in the production of organic acids. Italian J. Food Sei. 9(3) 171-182.
  • Fiedurek J. (1999): Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnol. 19(2)179-186.
  • Flinn J.E., Gloor U. (1996): China's growing presence in fermentation markets. Biotechnol. (14) 151-154.
  • FujiiN., Yasuda K., SakakibaraM. (1994): Effect of volume ratio of cellulose carriers and time interval of repeated batch culture on citric acid productivity by immobilized Aspergillus niger. J. Ferment. Bioeng. 78(5) 389-393.
  • Funtikova N.S., Katomina A.A. (1988): Wlianie korotkocepoczecnych spirtov na nienasysciennost poliarnoi i nieirtralnoi frakcii lipidów griba Aspergillus oryzae. Mikrobiol., 57(5)771-773.
  • Funtikova N.S., Katomina A.A., Suhih A.P. (1988): Izmienienie zirno-kislotnogo sostava lipidov griba Aspergillus oryzae pri adaptacii k spirtam. Mikrobiol. 57(5) 885-886.
  • Gabara B., Żakowska Z. (1997): Effect ofSpumolKon cell wall of Aspergillus niger strains characterized by different tolerance to toxic compounds of beet molasses. Acta Microbiol. Pol. 46(2) 219-223.
  • Garg K., Sharma C.B. (1991): Repeated batch production of citric acid from sugarcane molasses using recycled solid - state surface culture of Aspergillus niger. Biotechnol. Lett. 13(12)913-916.
  • Garg N., Hang Y.D. (1995): Microbial production of organic acids from carrot processing waste. J. Food Sei. Technol. 32(2) 119-121.
  • Gąsiorek E. (1999): Badania nad biosyntezą kwasu cytrynowego metodą hodowli w podłożu stałym (solid- state): Praca doktorska. Wrocław: AE.
  • Ghosh P., Banik A.K. (1998): Effect of chemical nutrients on aconilase activity during citric acid fermentation by a mutant strain of Aspergillus niger. Acta Microbiol. Pol. 47(3) 253-260.
  • Godo S., Klein J., Bales V., Annus J. (1999): Mixing time in airlift reactors during citric acid fermentation. Bioprocess Eng. (21) 245-248.
  • Gomez R., Schnabel L, Garrido J. (1988): Pellet growth and citric acid yield of Aspergillus niger 110. Enzyme Microb. Technol. (10) 188-191.
  • Gorbataja E., Smirnov V. (1973): Vlijanie mechaniceskoj ocistki melassy na brozenie i siom limonnoj kisloty. Prikl. Biokhim. Mikrobiol., 9 (3) 375-379.
  • Gradisnik Grapulin M., Legisa M. (1997): A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl. Environ. Microbiol. 63(7) 2844-2849.
  • Greń J. (1978): Statystyka matematyczna modele i zadania. Warszawa: PWN.
  • Gupta J.K., Heding L.G., Jorgensen O.B. (1976): Effect of sugars, hydrogen ion concentration and ammonium nitrate on the formation of citric acid by Aspergillus niger. Acta Microbiol. Acad. Sei. Hung. (23) 63-67.
  • Gupta S., Sharma C.B. (1994): Continuous production of citric acid from sugarcane mo lasses using a combination of submerged immobilized and surface stabilized cultures of Aspergillus niger KCU 520. Biotechnol. Lett. 16(6) 599-604.
  • Gupta S., Sharma C.B. (1995): Citric acid fermentation by the mutant strain of the Aspergillus niger resistant to manganese ions inhibition. Biotechnol. Lett. 17(3) 269-274.
  • Habison A., Kubicek C.P., Rohr M. (1983): Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209(3) 669-676.
  • Hannan M.A., Sarwar M.G., Baten A., Chaudhury N. (1976): Step-wise mittational improvement of Aspergillus niger for citric acid productivity in cane molasses. Folia Microbiol. (21)409-412. Hansa Melasse Handelsgesellschaft. Hamburg (1998): http://www.melasse.de.
  • Hasegawa S., Chi H. Fong., Miyake M., Keithly J.H. (1996): Limonoid glucosides in orange molasses. J. Food Sei. 61(3) 560-561.
  • Honecker S., Bisping B., Yang Z., Rehm H.J. (1989): Influence of sucrose concentration and phosphate limitation on citric acid production by immobilized cells of Aspergillus niger. Appl. Microbiol. Biotechnol. (31) 17-24.
  • Horitsu H., Clark D.S. (1966): Effect offerrocyanide on growth and citric acid production by Aspergillus niger. Can. J. Microbiol. (12) 901-907.
  • Hossain M., Brooks J.D., Maddox I.S. (1984): The effect of the sugar source on citric acid production by Aspergillus niger. Appl. Microbiol. Biotechnol. 19(6) 393-397.
  • Hustede H., Rudy H. (1976): Citric acid by submerged fermentation. Patent USA 3941656.
  • Ilczuk Z., Dobrowolska J. (1971): Oddziaływanie pierwiastków śladowych na proces fermentacji cytrynowej prowadzonej na podłożach melasowych. Przem. Ferm. Rolny 15(6) 10-13.
  • Ilczuk Z. (1987): Mikrobiologiczna synteza kwasów spożywczych. Postępy Mikrobiol. 26(1/2) 119-129.
  • Ingram L.O. (1976): Adaptation of membrane lipids to alcohols. J. Bacteriol. 125(2) 670-678.
  • Ingram L.O. (1977): Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl. Environ. Microbiol. 33(5) 1233-1236.
  • Ingram L.O. (1990): Ethanol tolerance in bacteria. Crit. Rev. Biotechnol. 9(4) 305-319.
  • Janota-Bassalik L., Olczyk C., Chodorowska M. (1970): Searching, in beet molasses, activators or inhibitors for citric acid fermentation. Acta Microbiol. Pol. (B) 2(2) 137-140.
  • Jernejc K., Cimerman A., Vendramin M., Perdih A. (1990): Lipids of a citric acid producing Aspergillus niger strain grown in copper and in manganese supplemented media. Appl. Microbiol. Biotechnol. 32(6) 699-703.
  • Kaiser K.P., Hupf H. (1979): Isotachophorese in der Lebensmittelanalytik. I. Prinzip der Isotachophorese. Nachweis und Bestimmung von Saeuren. Deutsche Lebensmittel Rundschau 75(10) 300-304.
  • Kapadia Group. (1999): H.H.K Molasses Exporters, http://www.kapadia-group.com.
  • Karim M.I.A., Ariff A., Yusof K. (1995): The influence of culture conditions on pellet formation and citric acid production by Aspergillus niger. ASEAN Food Journal 10(3) 90-93.
  • Karovicova J., Drdak M., Polonsky J. (1990): Utilization of capillary isotachophoresis in the determination of organic acids in food. J. Chromatography 509(1) 283-286.
  • Kaseno, Tako Kokugan (1997): The effect of molasses pretreatment by ceramic microfiltration membrane on ethanolfermentation. J. Ferment. Bioeng. 83(6) 577-582.
  • Kautola H., Rymowicz W., Linko Y.Y., Linko P. (1992): The utilization of beet molasses in citric acid production with yeast. Sei. Aliments 12(3) 383-392.
  • Kiel H., Guvrin R., Henis Y. (1981): Citric acid fermentation by Aspergillus niger on low sugar concentrations and cotton waste. Appl. Environ. Microbiol. 42(1) 1-4.
  • Kirn K.S., Yoo Y.J., Kim M.H. (1995): Control of intracellular ammonium level using specific oxygen uptake rate for overproduction of citric acid by Aspergillus niger. J. Ferment. Bioeng. 79(6) 555-559.
  • Kirimura K., Hirowatari Y, Usami S. (1987): Alterations of respiratory systems in Aspergillus niger under the conditions of citric acid fermentation. Agric. Biol. Chem. 51(5) 1299-1303.
  • Kirimura K., Pyo S., Lee P., Nakajima I., Kawabe S., Usami S. (1988): Improvement in citric acid production by haploidization of Aspergillus niger diploid strains. J. Ferment. Technol. 66(4) 375-382.
  • Kisser M., Kubicek C.P., Rohr M. (1980,): Influence of Aspergillus on morphology and cell wall composition of Aspergillus niger during citric acid fermentation. Arch. Microbiol. 128(1)26-33.
  • Klasson T.K., Clausen E.G., Gaddy J.L. (1989): Continuous fermentation for the production of citric acid from glucose. Appl. Biochem. Biotechnol. (20/21) 491-509.
  • Kocan J., Bohacik L., Krcmar S. (1987): Automatizovany system riadenia submerznej fermentacje kyseliny citronovej. Kvasny Prumysl 33(2) 46-50.
  • Kovats J. (1956): Fermentacja cytrynowa wgłębna. Przem. Spoż. 6(7/8) 347-348.
  • Kovats J. (1973): Problemy i trudności związane z użyciem melasów do fermentacji cytrynowej. Przem. Ferm. Rolny 17(11 712) 24-28.
  • Kovats J. (1975): Fermentacja cytrynowa na roztworach melasowych metodą wgłębną. Przem. Ferm. Rolny 19(5) 18-22.
  • Kovats J., Gackowska L. (1976): Wpływ przerw w napowietrzaniu cieczy w fermentacji cytrynowej wgłębnej na roztworach melasowych. Przem. Ferm. Rolny 20(2) 22-25.
  • Kovats J., Gackowska L. (1979): Badania nad przebiegiem fermentacji cytrynowej wgłębnej w roztworach melasowych z dodatkiem węgla aktywnego. Przem. Ferm. Owoc. Warzyw. 23(8) 25-28.
  • Kristapsons M.Z., Habibullin R.E. (1985): Principy izmierenija okislitelno-vosstanovitelnogo potenciala v biotechnologii mikrobnogo sinteza. Obzornaja informacija. Moskva: VNIISENTII.
  • Kristiansen B., Sinclair C.G. (1978): Production of citric acid in batch culture. Biotech-nol. Bioeng. (11) 1711-1722.
  • Kristiansen B., Sinclair C.G. (1979): Production of citric acid in continuous culture. Biotechnol. Bioeng. (21) 297-315.
  • Kubicek C.P., Roehr M. (1977): Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger. Eur. J. Appl. Microbiol. 4(3) 167-175.
  • Kubicek C.P., Fuhrer L., Zehentgruber O., Rohr M. (1978): The operation of oxidative mechanisms during citric acid fermentation by Aspergillus niger. Eur. Congr. Biotechnol. 131-134.
  • Kubicek C.P., Hampel W., Rohr M. (1979): Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 123(1) 73-79.
  • Kubicek C.P., Zehentgruber O., Rohr M. (1979b): An indirect method for studying the fine control of citric acid formation by Aspergillus niger. Biotechnol. Lett. 1(1) 47-52.
  • Kubicek C.P., Zehentgruber O., El-Kalak, H., Roehr M. (1980): Regulation of citric acid production by oxygen: effect of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9(2) 101-115.
  • Kujau M., Weber H., Barth G. (1992): Characterization of mutants of yeast Yarrowia lipolytica defective in acetyl-Coenzyme A synthetase. Yeast (8) 545-550.
  • Kumar K., Ethiraj S. (1976): Influence of methanol and groundnut oil on citric acid production from sugar cane juice by Aspergillus niger. Int. Sugar J. 78(925) 13-15.
  • Kundu S., Panda T., Majumdar S.K., Guha B., Bandyopadhyay K.K. (1984): Pretreatent of Indian cane molasses for increased production of citric acid. Biotechnol. Bioeng. (9) 1114-1121.
  • Kutermankiewicz M., Leśniak W., Bólach E. (1980): Wykorzystanie cukierniczego soku gęstego do fermentacji wgłębnej kwasu cytrynowego. Przem. Ferm. Owoc. Warzyw. (6)27-31.
  • Kutermankiewicz M., Leśniak W. (1984): Fermentacja wgłębna kwasu cytrynowego w Wytwórni Kwasu Cytrynowego w Raciborzu - próba oceny. Przem. Ferm. Owoc. Warzyw. (11)26-28.
  • Kutermankiewicz M. (1986): Uzdatnianie brzeczki melasowej do wgłębnej fermentacji cytrynowej przez ograniczenie szkodliwego działania jonów Ca++. Przem. Ferm. Owoc. Warzyw. (2) 25-27.
  • Kutermankiewicz M., Leśniak W. (1989): Effect of medium purity on submerged citric acid fermentation yield with particular emphasis on mineral salts content. Acta Aliment. Pol. 15(1)97-105.
  • Lakshminarayana K., Chaudhary K., Ethiraj S., Tauro P. (1975): A solid-state fermentation method for citric production using sugar cane bagasse. Biotechnol. Bioeng. (2) 291-95.
  • Lal D.N., Srivastava A.S. (1982): Effect of vitamins on microbial production of citric acid by Aspergillus niger. Zentralbl. Mikrobiol. 137(5) 381-385.
  • Lasztity R., El Shafei M, Abd El Samei M.B. (1986): Biochemical studies on some non-conventional sources of protein. III. Molasses. Nahrung 30(6) 629-632.
  • Legisa M., Gradisnik Grapulin M. (1995): Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger. Appl. Environ. Microbiol. 61(7) 2732-2737.
  • Leśniak W. (1972): Badania nad fermentacją kwasu cytrynowego metodą wgłębną. Praca doktorska. Wrocław-Poznań.
  • Leśniak W. (1974): Przydatność niektórych substancji jako stymulatorów w procesie fermentacji wgłębnej kwasu cytrynowego. Prace Nauk. WSE Wrocław (52) 49-61.
  • Leśniak W. (1975): Dobór podłoża fermentacyjnego dla nowo wyizolowanego wysoko aktywnego mutanta Aspergillus niger. Prace Nauk. AE Wrocław (69) 93-109.
  • Leśniak W. (1976): Metoda szybkiego określania optymalnej dawki żelazocyjanku potasu przy przygotowaniu podłoży melasowych dla fermentacji kwasu cytrynowego. Przem. Ferm. Rolny 20(6) 22-25.
  • Leśniak W., Podgórski W., Pietkiewicz J. (1986): Możliwości zastosowania hydrolu glukozowego do produkcji kwasu cytrynowego. Przem. Ferm.. Owoc. Warzyw. (6) 22-25.
  • Leśniak W., Pietkiewicz J., Podgórski W. (1989): Wpływ mikroelementów składników stali kwasoodpornej na wgłębną fermentację cytrynową. XX Sesja Naukowa KTiChŻ PAN. Kraków. Streszczenia doniesień 165-166.
  • Leśniak W., Kutermankiewicz M. (1990): Podstawy produkcji kwasu cytrynowego. Warszawa: STC.
  • Leśniak W., Podgórski W., Pietkiewicz J. (1993): Oddziaływanie mikroelementów występujących w stali bioreaktora na proces biosyntezy kwasu cytrynowego. V Ogólnokrajowa Sesja Naukowa: Postępy Inżynierii Bioreaktorowej. Pleszew. Mat. Sesyjne 2/93 79-85.
  • Leśniak W., Pietkiewicz J., Podgórski W. (1997): Czyste surowce jako substraty biosyntezy kwasu cytrynowego metodą wgłębną. II Ogólnopolskie Sympozjum: Biotechnologia w Uczelniach Technicznych. Warszawa. Materiały 149-154.
  • Leśniak W. (1999): Fermentation substrates. Citric acid biotechnology. London: Taylor & Francis Ltd.
  • Leśniak W., Podgórski W. (1999): Effect of aminoacids and vitamins on citric acid biosynthesis. Progress in Biotechnology. Food Biotechnology. Vol. 17. Amsterdam: Elsevier Science B.V.
  • Lockwood L.B., Batti M. A. (1965): Biosynthetic process for making citric acid. Patent USA 3189527.
  • Maddox I.S., Hossain M., Brooks J.D. (1986): The effect of methanol on citric acid production from galactose by Aspergillus niger. Appl. Microbiol. Biotechnol. 23(3/4) 203-205.
  • Maldonado M.C., Strasser de Saad A.M., Callieri DAS. (1993): Methanol utilization by a strain of Aspergillus niger: influence on the synthesis and activity ofpectinases. World J. Microbiol. Biotechnol. 9(2) 202-204.
  • Manonmani H.K., Sreekantiah K.R. (1987): Studies on the conversion of cellulose hydrolysate into citric acid by Aspergillus niger. Process Biochem. 22(3) 92-94.
  • Mashhoor W.A., Gamal R.F., Refaat A.A., Nasr S.A. (1987a): Submerged production of citric acid by strains of Aspergillus niger. Ann. Agric. Sei. Ain Shams Univ. 32(2) 1005-1021.
  • Mashhoor W.A., Gamal R.F., Refaat A.A., Nasr S.A. (1987b): Cane molasses as a substrate for submerged production of citric acid by Aspergillus niger. Ann. Agric. Sei. Ain Shams Univ. 32(3) 1489-1506.
  • Mashhoor W., Gamal R.F., Refaat A.A., Nasr S.A. (1988): Effect of trace elements and vitamins on submerged production of citric acid by Aspergillus niger. Ann. Agric. Sei. Ain Shams Univ. 33(1) 153-162.
  • Masior S., Kuchcik T., Sikorska D. (1974): Wpływ potencjału redoksowego brzeczek melasowych na powierzchniową fermentację cytrynową. Przem. Ferm. Rolny 18(8) 15-18.
  • Miall L.M., Parker G.F. (1975): Kontinuierliches verfahren zurfermentativen herstellung von zitronensaure und nach dem verfahren hergestellte zitronensaure. Patent niemiecki 2429224.
  • Mine J.S., Ivanova L.F., Gorbataja E.I. (1976): Primenenie gidrosiilfila natrija dla povysenija vychoda limonnoj kisloty. Khlebopek. Kond. Prom. (8) 36-37.
  • Mine J.S., Cybulkova L.P., Gorbataja E.I. (1978): Kontrol kacestva melass. Khlebopek. Kond. Prom. (7)30-31.
  • Mine J.S., Ivanova L.F. (1979): Obrabotka melassnych sried trilonom B wproizvodstwie limonnoj kisloty. Khlebopek. Kond. Prom. (4) 36-37.
  • Mischak H., Kubicek C.P., Rohr M. (1985): Formation and location of glucose oxidase in citric acid producing mycelia of Aspergillus niger. Appl. Microbiol. Biotechnol. 21(1/2)27-31.
  • Moyer A.J. (1953a): Effect of alcohols on the mycological production of citric acid in surface and submerged culture. I. Nature of the alcohol effect. Appl. Microbiol. (1) 1-7.
  • Moyer A.J. (1953b): Effect of alcohols on the mycological production of citric acid in surface and submerged culture. II. Fermentation of crude carbohydrate. Appl. Microbiol. (1) 8-13.
  • Mukhopadhyay S.N., Ghose T.K. (1976): Oxygen participation in fermentation. Part 1. Oxygen microorganism interactions. Process Biochem. 6(19) 19-27.
  • Netik A., Torres N.V., Riol J.M., Kubicek C.P. (1997): Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim. Biophys. Acta 1326(2) 287-294.
  • Nonomura A.M. Benson A.A. (1992): The path of carbon in photosynthesis: improved crop yields with methanol. Proc. Natl. Acad. Sei. USA 89(20) 9794-9798.
  • Nowakowska-Waszczuk A. (1975): Niektóre zagadnienia fizjologii wzrostu i biosyntezy kwasu cytrynowego u Aspergillus niger. Postępy Mikrobiol. 14(1) 87-106.
  • Nowakowska-Waszczuk A., Kędziora K., Bałaban J., Dębieć A. (1987): Wpływ odpieniaczy stosowanych w przemyśle cukrowniczym na fermentację cytrynową roztworów melasowych. Przem. Ferm. Owoc. Warzyw. (4) 26-27.
  • Olsvik E.S., Kristiansen B. (1992): Influence of oxygen tension, biomass concentration and specific growth rate on the rheological properties of a filamentous fermentation broth. Biotechnol. Bioeng. (11) 1293-1299.
  • Otero M.A., Reyes A., Carrera E., Leon M. A. (1993): Composition and properties of cane molasses from northeast Cuba. Int. Sugar J. 95(1129) 4-8.
  • Oura E. (1983): Biomass from molasses. Biotechnology. Weinheim: Verlag Chemie.
  • Papagianni M., Mattey M., Kristiansen B. (1994): Morphology and citric acid production of Aspergillus niger PM1. Biotechnol. Lett. 16(9) 929-934.
  • Papagianni M., Mattey M., Kristiansen B. (1999): The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch culture. Enzyme Microb. Technol. 25(8-9) 710-717.
  • Parvez S, Rajoka M.I., Ahmed M.N., Latif F., Shahid R., Malik K.A. (1998): Citric acid production from sugar cane molasses by 2-deoxyglucose-resistant mutant strain of Aspergillus niger. Folia Microbiol. 43(1) 59-62.
  • Pena Miranda M., Gonzalez Benito G. (1994): Acido citrico. Caracteristicas, aplicaciones y procesos de obtención. Aliment. Equipos y Tecnol. 13(2) 91-98.
  • Pera L.M., Callieri D.A. (1997): Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger. Folia Microbiol. 42(6) 551-556.
  • Pera L.M., Callieri D.A. (1999): Influence of calcium on fungal growth and citric acid production during fermentation of a sugarcane molasses-based medium by a strain of Aspergillus niger. World J. Microbiol. Biotechnol. 15(5) 647-649.
  • Perlman D., Sih C.J. (1960): Fungal synthesis of citric, fumaric, and itaconic acids. Progress in Industrial Microbiology. Vol. II. London: Hockenhull.
  • Pietkiewicz J., Leśniak W., Podgórski W. (1984): Bioreaktor do tlenowej hodowli drobnoustrojów. Wzór użytkowy 39805.
  • Pietkiewicz J., Podgórski W., Leśniak W. (1987): Bioreaktor laboratoryjny Biomer. II Ogólnokrajowa Sesja Naukowa: Postępy Inżynierii Bioreaktorowej. Łódź. Mat. Sesyjne 38-46.
  • Pietkiewicz J., Podgórski W., Leśniak W. (1996): Citric acid fermentation on decationized and undecationized dextrose syrups. Int. Conference: Advances in Citric Acid Tech nology. Piestany 9. Ed. LikoSpol Ltd. Bratislava.
  • Pintado J., Gonzalez M.P., Murado M.A. (1997): Interactions between pretreatment and nutrient concentrations of mussel processing effluents for citric acid production. Enzyme Microb. Technol. 20 (7) 544-549.
  • Pirt S.J., Callow D.S. (1960): Studies of the growth of Pénicillium chrysogenum in continuous flow culture with reference to penicillin production. J. Appl. Bacteriol. (23) 87-98.
  • PN-76/R-64772. Melas buraczany. Wydawnictwo Normalizacyjne.
  • Podgórski W. (1983): Dynamic method of determination of optimal potassium ferrocyanide dose for the citric acid fermentation. 3rd Symp. Socialist Countries on Biotechnology. Bratislava. Abstracts A4-43.
  • Podgórski W. (1984): Sterowanie cytrynową fermentacją wgłębną na podłożu melaso wym. Praca doktorska. Wrocław: AE.
  • Podgórski W., Leśniak W., Pietkiewicz J., Ziobrowski J. (1986.): Indukcja i selekcja mutantów Aspergillus niger dla cytrynowej fermentacji wgłębnej podłoży melasowych. Prace Nauk. AE Wrocław (359) 5-16.
  • Podgórski W., Leśniak W., Pietkiewicz J. (1992): Wymiana gazowa pleśni Aspergillus niger jako parametr oceny efektywności biosyntezy kwasu cytrynowego. XXIII Sesja Naukowa KTiChŻ PAN. Poznań. Materiały 161- 164.
  • Podgórski W., Leśniak W., Żyrek E. (1996a): Forma grzybni Aspergillus niger a wydajność biosyntezy kwasu cytrynowego. XXVII Sesja Naukowa KTiChŻ PAN. Szczecin. Materiały 114.
  • Podgórski W., Pietkiewicz J., Owoc M., Leśniak W. (1996b): Inteligentny system wspomagający realizacją procesów biotechnologicznych. III KK Kowban. Materiały. Wrocław: WTN 77-82.
  • Podgórski W. (1999a): http://credit.ae.wroc.pl/~podgorsk.
  • Podgórski W. Leśniak W. (1999b): Zintegrowany system badawczy do sterowania procesami biosyntezy. VI KK Kowban. Materiały. Wrocław: WTN 89-94.
  • Podgórski W., Leśniak W. (1999c): Induction of citric acid overproduction in Aspergillus niger on beet molasses. Progress in Biotechnology. Food Biotechnology. Vol. 17. Amsterdam: Elsevier Science B.V. 247-250.
  • Podgórski W., Leśniak W. (1999d): Symulacja wzrostu Aspergillus niger w biosyntezie kwasu cytrynowego na podłożach syntetycznych z sacharozą na podstawie analizy gazów odlotowych. Zesz. Nauk. Politech. Łódź. Inż. Chem. Procesowa (26) 19-27.
  • Podgórski W., Leśniak W. (2000): On-line monitoring of mould's activity in submerged citric acid production. Chem. Papers 54(6a) 355-360.
  • Qadeer M.A., Yasin M., Baig M.A. (1969): Effect offerrocyanide on citric acid production from beet molasses by Aspergillus niger. Pakistan J. Sei. Ind. Res. 12(1/2) 47- 48.
  • Qazi G.N., Gaind C.N., Chaturvedi S.K., Chopra C.L., Traeger M., Onken U. (1990): Pilot scale citric acid production with Aspergillus niger under several conditions. J. Ferment. Bioeng. 69(1) 72-74.
  • Reuss M., Fröhlich S., Kramer B., Messerschmidt K., Pommerening G. (1986): Coupling of microbial kinetics and oxygen transfer for analysis and optimization of gluconic acid production with Aspergillus niger. Bioprocess. Eng. (l) 79-91.
  • Roehr M., Zehentgruber O., Kubicek C.P. (1981): Kinetics of biomass formation and citric acid production by Aspergillus niger on pilot plant scale. Biotechnol. Bioeng. (11)2433-2445.
  • Rohr M., Kubicek Ch.P., Kominek J. (1983): Citric acid. Biotechnology. Weinheim: Verlag Chemie.
  • Rohr M., Kubicek C.P., Zehentgruber O., Orthofer R. (1987): Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl. Microbiol. Biotechnol. (27) 235-239.
  • Roukas T., Kotzekidou P. (1987): Influence of some trace metals and stimulants on citric acid production from brewery wastes by Aspergillus niger. Enzyme Microb. Technol. (9) 291-294.
  • Roukas T., Harvey L. (1988): The effect of pH on production of citric and gluconic acid from beet molasses using continuous culture. Biotechnol. Lett. 10(4) 289-294.
  • Roukas T., Alichidis E. (1991): Citric acid production from beet molasses by cell recycle of Aspergillus niger. J. Ind. Microbiol. 7(1) 71-73.
  • Roukas T. (199 la): Production of citric acid from beet molasses by immobilized cells of Aspergillus niger. J. Food Sei. 56(3) 878-880.
  • Roukas T. (1991 b): Influence of impeller speed on citric acid production and selected enzyme activities of the TCA cycle. J. Ind. Microbiol. (7) 221-226.
  • Rugsaseel S., Morikawa S., Kirimura K., Usami S. (1995): Stimulation of citric acid production in Aspergillus niger by addition of viscous substances in shake culture. Appl. Microbiol. Biotechnol. 42 (6) 839-843.
  • Rugsaseel S., Kirimura K., Usami S. (1996): Citric acid accumulation by cycloheximide sensitive mutant strains of Aspergillus niger. Appl. Microbiol. Biotechnol. 45(1-2) 28-35.
  • Ruijter G.J.G., Van de Vondervoort P.J.I., Visser J. (1999): Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiol. UK 145(9) 2569-2576.
  • Rymowicz W., Wojtatowicz M., Jurgielewicz W. (1993): Wpływ natleniania na dynamikę wzrostu i tworzenia kwasu cytrynowego przez Yarrowia lipolytica A-101.22 w hodowlach na melasie. XXIV Sesja Naukowa KTiChŻ PAN. Wrocław. Referaty 302-306.
  • Rymowicz W. (1998): Biosynteza kwasu cytrynowego z glukozy przez wolne i immobilizowane komórki drożdży Yarrowia lipolytica w systemach ciągłych. Zesz. Nauk. AR Wrocław. Rozprawy CLI (329).
  • Sanchez M.A., Carreno A.R., Ledezma M. (1970): Effect of trace elements on citric acid fermentation by Aspergillus niger. Appl. Microbiol. 20(6) 888-892.
  • Saska M., Lancrenon X. (1994): Applications of continuous Chromatographie separation in the sugar industry. III. Desugarization of cane molasses. Int. Sugar J. 96(1150) 403-410.
  • Sassi G., Ruggeri B., Specchia V, Gianetto A. (1991): Citric acid production by Aspergillus niger with banana extract. Bioresource Technol. 37(3) 259-269.
  • Schiweck H. (1979): The influence of the different constituents of molasses on its suitability for yeast production. Symp: Problems with molasses in the yeast industry. Helsinki 20-37.
  • Schweiger L.B. (1961): Production of citric acid by fermentation. Patent USA 2970084.
  • Seichert L., Ujcova E., Musilkova M., Fencl Z. (1982): Effect of aeration and agitation on the biosynthetic activity of diffusely growing Aspergillus niger. Folia Microbiol. 27(5) 333-334.
  • Shadafza D., Ogawa T., Fazeli A. (1976): Comparison of citric acid production from beet molasses and date syrup with Aspergillus niger. J. Ferment. Technol. 54(2) 67-75.
  • Shankaranand VS., Lonsane B.K. (1992): Wheat bran as a substrate for production of citric acid by Aspergillus niger CFTRl 6 in solid-state fermentation system: titre and yield improvements. Chem. Mikrobiol. Tech. Lebensmittel 14(1/2) 33-39.
  • Shankaranand VS., Lonsane B.K. (1994a): Ability of Aspergillus niger to tolerate metal ions and minerals in a solid state fermentation system for the production of citric acid. Proc. Biochem. 29(1) 29-37.
  • Shankaranand VS., Lonsane B.K. (1994b): Coffee husk: an inexpensive substrate for production of citric acid by Aspergillus niger in a solid state fermentation system. World J. Microbiol. Biotechnol. 10(2) 165-168.
  • Shu P., Johnson M.J. (1948): The interdependence of medium constituents in citric acid production by submerged fermentation. J. Bacteriol. 56(5) 577-585.
  • Siroky L., Leopold J. (1983): Zpusob pripravy kvasneho melasoveho media pro citronove kvaseni. Patent czechosłowacki 203545. Sobótka M., Machon V., Seichert L., Ujcova E., Marschalkova Z. (1985): Chemical engineering aspects of submerged production of citric acid. Folia Microbiol. (30) 381-392.
  • Suzuki A., Sarangbin S., Kirimura K., Usami S. (1996): Direct production of citric acid from starch by a 2-deoxyglucose resistant mutant strain of Aspergillus niger. J. Ferment. Bioeng. 81(4)320-323.
  • Swarthout E.J. (1966): Citric acid production. Patent USA 3285831.
  • Szczodrak J., Ilczuk Z. (1975): Wpływ alkoholi na syntezą kwasu cytrynowego przez pleśnie Aspergillus niger. Przem. Ferm. Rolny. 19(6) 20-21.
  • Takahira O., Abbas F. (1976): Additive effect offerrocyanide treatment and step charge of pH on citric acid production from Iranian beet molasses with Aspergillus niger. J. Ferment. Technol. 54(2) 63-66.
  • Tani Y., Sakai Y., Chou S.G. (1990): Production of citric acid from methanol by a fluoroacetate resistant mutant of Candida sp. Y-l. Appl. Microbiol. Biotechnol. 34(1) 5-9.
  • Torres N.V., Voit E.O., Gonzalez Alcon C. (1996): Optimization of nonlinear biotechnological processes with linear programming: application to citric acid production by Aspergillus niger. Biotechnol. Bioeng. (3) 247-258.
  • Tran C.T., Mitchell D.A. (1995): Pineapple waste - a novel substrate for citric acid production by solid-state fermentation. Biotechnol. Lett. 17(10) 1107-1110.
  • Tsay S.S., To K.Y. (1987): Citric acid production using immobilized conidia of Aspergillus niger TUB 2022. Biotechnol. Bioeng. (3) 297-304.
  • Vergnaud P., Niquet, (1964): Zpusob wyroby kyseliny citronove aerobnim kvasenim. Patent czechosłowacki 109988. ł!5. Vinarov A.Ju., Sidorenko T. E. (1997): Stehiometriceskie charakteristiki sinteza limonnoj kisloty na smesi uglerodsoderzasih subslratov. Prikl. Biokhim. Mikrobiol. 33(1) 57-60.
  • Vogelbusch (1998): Milestones, Citric acid plants, http://www.vogelbusch.com/citric.htm.
  • Volfova O., Havrlikova M. (1985): Vyuziti methanolu v biotechnologii. Kvasny Prumysl 31(7-8) 172-174.
  • Wang J.L., Liu P. (1996): Comparison of citric acid production by Aspergillus niger immobilized in gels and cryogels ofpolyacrylamide. J. Ind. Microbiol. (16) 351-353.
  • Wojtatowicz M., Sobieszczański J. (1987): Kontrola biosyntezy kwasów cytrynowych z n-heksadekanu przy udziale Candida lipolytica A-101 poziomem mineralnych składników podłoża. XXI Zjazd PTM. Mat. Nauk.
  • Wojtatowicz M. (1991): Studia nad biosynteza kwasów cytrynowych przez szczep drożdży Yarrowia lipolytica A101- i jego mutanty. Zesz. Nauk. AR Wrocław. Rozprawa habilitacyjna (96).
  • Wojtatowicz M., Marchin G.L. (1993): Attempts to improve strain A-101of Yarrowia lipolytica for citric acid production from n-paraffins. Process. Biochem. 28(7) 453-460.
  • Wolschek M., Kubicek C.P. (1999): Biochemistry of citric acid accumulation by Aspergillus niger. Citric acid biotechnology. London: Taylor & Francis Ltd.
  • Xu D.B., Madrid C.P., Rohr M., Kubicek C.P. (1989): The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30(6) 553-558.
  • Yigitoglu M., McNeil B. (1992): Ammonium ion and citric acid supplementation in batch cultures of Aspergillus niger B 60. Biotechnol. Lett. 14(9) 831-836.
  • Yigitoglu M., McNeil B. (1994): Optimization of initial pH and ammonium ion concentration in batch cultures ofAspergillus niger B 60 for citric acid production. Turkish J. Chem. 18(1)9-13.
  • Zuravski G.I. (1939): O gazoobmienie pri obrazovanii limmonnoj kisloty.Mikrobiol. 8(3-4)414-431.
  • Żakowska Z., Gabara B. (l 991 a): Changes in development and ultrastructure of Aspergillus niger mycelium in the presence of toxic substances from molasses in citric acid fermentation medium. Acta Microbiol. Pol. 40(3/4) 243-254.
  • Żakowska Z., Gabara B. (1991b): Changes in development and ultrastructure of Aspergillus niger mycelium, Strain with increased tolerance to toxic substances from beet molasses. Acta Microbiol. Pol. 40(3/4) 255-264.
  • Żakowska Z., Gabara B., Kusewicz D. (1997): Cell wall analysis in Aspergillus niger strains characterized by different tolerance to toxic compounds of beet molasses. Acta Microbiol. Pol. 46(1) 27.
  • Zheng Y.G., Wang Z.,Chen X.L. (1999): Citric acid production from the mash of dried sweet potato with its dregs by Aspergillus niger in an external-loop airlift bioreactor. Process Biochem. 35(3-4) 237-242.
  • Ziobrowski J., Elimer E. (1968): Badania nad dokładnością ilościowego oznaczania pojedynczych cukrów w roztworze wodnym, mieszaniny cukrów tzw. szybką metodą oznaczania substancji redukujących. Prace Nauk. WSE Wrocław (13) 31-67.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000086339142

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.