PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | nr 1011 Pozyskiwanie wiedzy i zarządzanie wiedzą | 338--350
Tytuł artykułu

Inteligentny agentowy system rekomendacji wspierający serwis internetowy

Treść / Zawartość
Warianty tytułu
Intelligent Agent-Based Recommender System for Internet Service Support
Języki publikacji
PL
Abstrakty
W pracy omówiona została architektura systemu rekomendacji, przedstawionego na tle wieloagentowego systemu internetowej księgarni (system Watto). W kolejnych częściach artykułu został przedstawiony fragment pierwszego etapu, w którym prace modelowe i implementacyjne koncentrowały się wokół wieloagentowego systemu rekomendacji, wspierającego obsługę klientów. Potrzeba adaptacji programowego agenta do zmiennych warunków otoczenia wpłynęła na zastosowanie w tym systemie algorytmu uczenia ze wzmocnieniem.
EN
One of the ways of wining the customers' interest in all kind of Internet service and to making them stay with it, is to apply right recommender mechanism. Recommender mechanism gives the opportunity for more personal approach to the sale, advertisement and promotion issues of commodities that the customer could be interested with. The more accurate the recommendations are the more likely it would succeed. Our proposal is the intelligent agent-based recommender system with the reinforcement learning. (original abstract)
Bibliografia
  • Abbattisat F., Degemmis M., Fanizzi N., Licchelli O., Lops P., Semararo G., Zambetta F.: Learning User Profiles for Content-Based Filtering in e-Commerce, 2002, dostępny pod adresem: http://citeseer.nj.nec.com/abbattista02learning.html.
  • Billus D., Pazzani M.J.: A Hybrid User Model for News Story Classification, Proceedings of the VII International Conference on User Modeling, Banff, Canada (1999) 99-108.
  • Kohavi R., Provost F.: Applications of Data Mining to Electronic Commerce, Data Mining and Knowledge Discovery, 1-7, 2001, Kluwer Academic Publishers, Boston.
  • Furnér J.: On recommending, .Journal of the American Society for Information Science and Technology", 2002.
  • Joachims T., Freitag D., Mitchell Т.: WebWatcher: A Tour Guide for the World Wide Web, Na- goya, Japan (1997), Proceedings of the XV International Joint Conference on Artificial Intelligence, 770-775.
  • Lee W.S.: Collaborative Learning for Recommender Systems Proc. 18th International Conf. on Machine Learning 2001.
  • Schafer J.B., Konstan J.A., Riedl J.: E-Commerce Recommendation Applications, 1999. ACM Conference on E-Commerce.
  • Fong Т., Nourbaksh I., Dautenhahn K.: A Survey of Socially Interactive Robots, ROBOTICS AND Autonomous Systems 42 (2003), 143-166.
  • Widyantoro D.H., loerger T.R., Yen J.: An Adaptive Algorithm for Learning Changes in User Interests, Kansas City, Missouri, Eight International Conference on Information and Knowledge Management (CIKM'99), November 2-6, 1999.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000096559003

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.