Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 180
Tytuł artykułu

Statystyczne modele struktury przyczynowej zjawisk ekonomicznych

Warianty tytułu
Statistical Models of Causal Structure of Economic Events.
Języki publikacji
Zaprezentowano podstawowe pojęcia "przyczyny" i "związku przyczynowo-skutkowego". Omówiono metody identyfikacji związków przyczynowo-skutkowych w modelach jakościowych. Zaprezentowano zagadnienia przyczyny i skutku na gruncie ekonometrii. Przedstawiono metody budowy modeli równań strukturalnych (SEM) oraz analizę czynnikową jako metodę pozwalającą na identyfikację modeli pomiarowych. Zanalizowano metodę TETRAD, która pozwala na automatyczna specyfikację modelu SEM. Omówiono także możliwości wykorzystania metod klasyfikacji do identyfikacji związków przyczynowo-skutkowych.
In this paper the basic concepts of "cause" and "cause-and-effect links" were presented. Methods of identification cause-and-effect links in quality models were discussed. Methods of construction structural equation models (SEM) were showed together with factor analysis. Also analysis of TETRAD method was presented. Possibilities of using classification methods in identification of cause-and-effect links were described. (KZ)
Opis fizyczny
  • Abell P. (1975), Modele w socjologii. PWN, Warszawa.
  • Aigner D., Goldberger A. (1977), Latent variables in socioeconomic models. North-Holland, Amsterdam.
  • Aitkin M. (1979), A simultaneous test procedure for contingency table models. Applied Statistics, 28, s. 233-242.
  • Anderson J., Gerbing D. (1982), Some methods for respecifying measurement models to obtain unidimensional construct measurement. Journal of Marketing Research, 19, s. 453-460.
  • Anderson J., Gerbing D. (1988), Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, s. 411-423.
  • Anderson T. (1984), An introduction to multivariate statistical analysis. John Wiley, New York.
  • Arbuckle J.L. (1997), Amos users' guide. Version 3.6. SmallWaters, Chicago.
  • Armitage P., Colton T. (red.) (1998), Encyclopedia in Biostatistics. John Wiley, New York.
  • Asher H. (1976), Causal modeling. Sage Publications. Beverly Hills, CA.
  • Basmann R.L. (1988), Casuality test and observationally equivalent representations of econometric models. Journal of Econometrics 39, s. 69-104.
  • Bagozzi R.P. (1980), Causal models in marketing. John Wiley, New York.
  • Barro R.J. (1984), Macroeconomics. John Wiley & Sons, New York.
  • Bartholomew D. (1987), Latent variable models and factor analysis. Oxford University Press, New York.
  • Bayol M.P., de la Foye A., Tellier C., Tenenhaus M. (2001), Use of PLS path modelling to estimate the European Consumer Satisfaction Index (ECSI) model. CISIA-CERESTA, Montreuil.
  • Bentler P. (1980), Multivariate analysis with latent variables: causal modeling. Annual Review of Psychology, 31, s. 419-456.
  • Bentler P. (1985), Theory and Implementation of EQS: A structural equations program. BMDP Statistical Software Inc., Los Angeles, CA.
  • Bentler P. (1986), Lagrange mulitplier and Wald tests for EQS and EQS/PC. BMDP Statistical Software Inc., Los Angeles, CA.
  • Bentler P. (1989), EQS: Structural equations program manual. BMDP Statistical Software Inc., Los Angeles, CA.
  • Bentler P., Bonet D. (1980), Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, s. 588-606.
  • Berndsen R., Daniels H. (1990), Qualitative dynamics and causality in a Keynesian model. Journal of Economic Dynamics and Control, 14, s. 435-450.
  • Blalock H. (1961), Causal inferences in nonexperimental research. University of North Carolina Press, Chapel Hill, NC.
  • Blalock H. (1969), Theory construction: from verbal to mathematical formulations. Prentice-Hall, Englewood Cliffs, NJ.
  • Blalock H. (1971), Causal models in the social sciences. Aldine-Atherton, Chicago, IL.
  • Blake C., Keogh E., Merz C.J. (1998), UCI Repository of Machine Learning databases. Department of Information and Computer Science, University of California, Irvine, CA.
  • Bollen K. (1979), Political democracy and the timing of development. American Sociological Review, 44, s. 572-587.
  • Bollen K. (1980), Issues in the comparative measurement of political democracy. American Sociological Review, 45, s. 370-390.
  • Bollen K. (1989), Structural equations with latent variables. John Wiley, New York.
  • Bollen K. (1990), Outlier screening and a distribution-free test for vanishing tetrads. Sociological Methods and Research, 19, s. 80-92.
  • Bollen K., Ting K. (1993), Confirmatory tetrad analysis. Sociological Methodology, 23, s. 147-175.
  • Bowden R. Turkington D. (1984), Instrumental variables. Cambridge University Press, New York.
  • Breiman L., Friedman J. Olshen R., Stone C. (1984), Classification and regression trees. Chapman & Hall/CRC Press, London.
  • Brzeziński J. (red.). (1993), Psychologiczne i psychometryczne problemy diagnostyki psychologicznej. U AM, Poznań.
  • Bunge M. (1968), O przyczynowości. Miejsce zasady przyczynowości we współczesnej nauce. PWN, Warszawa.
  • Byron R. (1972), Testing for misspecification in econometric systems using full information. International Economic Review, 28, s.138-151.
  • Callahan J., Sorensen S. (1992), Using TETRAD II as an automated exploratory tool. Social Science Computer Review, 10, s. 329-336.
  • Charemza W., Deadman D (1997), Nowa ekonometria. PWE, Warszawa.
  • Chin, W.W. (1998), The partial least squares approach for structural equation modeling, w: Modern methods for business research. G.A. Marcoulides (red.). Lawrence Erlbaum, New York.
  • Chow G.C. (1995), Ekonometria. PWN, Warszawa.
  • Christensen R. (1990), Log-linear models. Springer-Verlag, New York.
  • Crawford I.M., Lomas R.A. (1980), Factor Analysis - a tool for data reduction. European Journal of Marketing, 14, s. 414-421.
  • Cooper G. (1984), NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic knowledge. Department of Computer Science, Stanford University, Stanford, CA.
  • Cooper G., Herskovits E. (1992), A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, s. 308-347.
  • Costner H. (1971), Utilizing causal models to discover flaws in experiments. Sociometry, 34, s. 398-410.
  • Costner H., Schoenberg R. (1973), Diagnosing indicator ills in multiple indicator models. W: Structural equation models in the social sciences. A. Goldberger, O. Duncan (red.). Seminar Press, New York, s. 1697-199.
  • Costner H., Herting J. (1985), Respecification in multiple indicator models. W: Causal models in the social sciences. H. Blalock (red.). Aldine, New York, s. 321-393.
  • Davidson K., MacKinnon J. (1993), Estimation and inference in econometrics. Oxford University Press, Oxford.
  • De Kleer J., Brown J.S. (1984), A qualitative physics based on confluences. Artificial Intelligence, 24, s. 7-83.
  • De Kleer J., Brown J.S. (1986), Theories of causal ordering. Artificial Intelligence, 29, s. 33-62.
  • Dempster A. (1972), Covariance selection. Biometrics, 28, s. 157-175.
  • Duncan O.D (1966), Path analysis: sociological examples. American Journal of Sociology, 72, s.1-16.
  • Duncan O.D. (1975), Introduction to structural equation models. Academic Press, New York.
  • Dutta A. (2001), Telecommunications and economic activity: An analysis of Granger causality. Journal of Management Information Systems, 17, s. 71-95.
  • Engle R., Granger C. (1987), Cointegration and error correction: representation, estimation and testing. Econometrica, 55, s. 251-276.
  • Engle R., Hendry D., Richard J. (1983), Exogeneity. Econometrica, 51, s. 277-304.
  • Fisher R.A. (1936): The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, s.179-188.
  • Fisher F. (1966), The identification problem in economics. McGraw-Hill, New York.
  • Forbes H., Tufte E. (1968), A note of caution in causal modeling. American Political Science Review, 62, s. 1258-1264.
  • Forbus K.D. (1984), Qualitative Process Theory. Artificial Intelligence, 24, s. 85-168.
  • Fox J. (1984), Linear statistical models and related methods. Wiley, New York.
  • Freedman D. (1983 a), Structural-equation models: A case study. Technical Report, Department of Statistics, University of California, Berkeley.
  • Freedman D. (1983 b), A note on screening regression equations. American Statistician, 37,s. 152-155.
  • Freund Y., Schapire R.E. (1997), A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, s. 119-139.
  • Frydenberg M. (1990), The chain graph Markov property. Scandinavian Journal of Statistics, 17, s. 333-353.
  • Gabrieli M., Gilli M. (1984), Two approaches in reading model interdependencies. W: Analysing the structure of econometric models. J. Ancot (red.). Martinus Nijhoff, Hague.
  • Gatnar E. (1994), Metody modelowania jakościowego. Akademicka Oficyna Wydawnicza, IPI PAN, Warszawa.
  • Gatnar E. (1996), Modele jakościowe w ekonomii. Badania Operacyjne i Decyzje, 1, s.23-40.
  • Gatnar E. (1998 a), Analiza czynnikowa. Teoria i zastosowanie. AE, Katowice (maszynopis powielony).
  • Gatnar E. (1998 b), Symboliczne metody klasyfikacji danych. PWN, Warszawa.
  • Gatnar E. (2001), Nieparametryczna metoda dyskryminacji i regresji. PWN, Warszawa.
  • Gatnar E. (2002 a), Agregacja modeli dyskryminacyjnych. W: K., Jajuga M. Walesiak (red.), Klasyfikacja i analiza danych - teoria i zastosowania. Taksonomia, z. 9. Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 942, s. 217-226.
  • Gatnar E. (2002 b), Statystyczne modele związków przyczynowo-skutkowych, W: Zależności przyczynowo-skutkowe w badaniach rynkowych i marketingowych. S. Mynarski (red.). AE, Kraków, s. 95-104.
  • Gatnar E. (2002 c), Tree-based models in statistics. W: Classification, clustering and data analysis. K. Jajuga, A. Sokołowski, H.H. Bock (red.). Springer, Berlin, s. 399-408.
  • Geiger D., Verma T., Pearl J. (1990), Identifying independence in bayesian networks. Networks, 20, s. 507-533.
  • Geweke J., Meese R., Dent W. (1983), Comparing alternative tests of causality in temporal systems. Journal of Econometrics, 21, s. 161-194.
  • Gilli M. (1984), CAUSOR: A program for the analysis of recursive and interdependent causal structure. Technical Report 84.03, Universite de Geneve, Geneve.
  • Glymour C. (1983), Social science and social physics. Behavioral Science, 28, s.126-133.
  • Glymour C., Schemes R., Spirtes P., Kelly K. (1987), Discovering Causal Structure. Academic Press, San Diego, CA.
  • Goldberger A., Duncan O. (red.) (1973), Structural equation models in the social sciences. Seminar Press, New York.
  • Goodman L. (1973), Causal analysis of data from panel studies and other kinds of surveys. American Journal of Sociology, 78, s. 1135-1191.
  • Górniak J. (2000), My i nasze pieniądze. Wydawnictwo Aureus, Kraków.
  • Granger C.W. (1969), Investigating casual relations by econometric models and cross-spectral methods. Econometrica, 37, s. 425-438.
  • Granger C.W. (1986), Development in the study of cointegrated variables. Oxford Bulletin of Economics and Statistics, 48, s. 213-228.
  • Grodziński E. (1986), Myślenie hipotetyczne. Studium na pograniczu ontologii, filozofii języka i psychologii. Ossolineum, Wrocław.
  • Guilkey D.K., Salemi M.K. (1982), Small sample properties of three tests for Granger-causal ordering in a bivariate stochastic system. Review of Economics and Statistics, 64, s. 668-680.
  • Haavelmo T. (1953), Methods of measuring the marginal propensity to consume. W: Studies in econometric methods. W.C. Hoods, T.C. Koopmans (red.). John Wiley, New York.
  • Harary F., Norman R., Cartwright D. (1965), Structural models: an introduction to the theory of directed graphs. Wiley, New York.
  • Hartmann W. (1991), The CALIS procedure extended user's guide. SAS Institute Inc., Gary, NC.
  • Hausman D. (1984), Causal priority. Nous, 18, s. 261-279.
  • Heise D.R. (1975), Causal analysis. Wiley, New York.
  • Hendry D. (1986), Econometric modelling with cointegrated variables: an overview. Oxford Bulletin of Economics and Statistics, 48, s. 201-212.
  • Herting J., Costner J. (1985), Respecification in multiple indicator models. W: Causal models in the social sciences. H. Blalock (red.). Aldine, New York, s. 321-393.
  • Hicks J. R. (1979), Causality in economics. Basil Blackwell, Oxford.
  • Holland P. (1986), Statistics and causal inference. Journal of the American Statistical Association, 81, s. 945-960.
  • Hosmer D., Lemeshow S. (1989), Applied logistic regression. Wiley, New York.
  • Hunt E.B., Marin J., Stone PJ. (1966), Experiments in induction. Academic Press, New York.
  • Ingarden R. (1960), Spór o istnienie świata. PWN, Warszawa.
  • Intriligator M.D. (1978), Econometric models, techniques and applications. Prentice-Hall, Englewood Cliffs, NJ.
  • Iwasaki Y., Simon H. A. (1986), Casuality in device behavior. Artificial Intelligence, 29, s. 1-11.
  • Iwasaki Y. (1988), Causal ordering in a mixed structure. W: Proceedings of the 7th National Conference on Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, s. 313-318.
  • Jajuga K. (1993), Statystyczna analiza wielowymiarowa. PWN, Warszawa.
  • James L., Mulaik S., Brett J. (1982), Causal analysis: assumptions, models and data. Sage Publications, Beverly Hills, CA.
  • Jőreskog K. (1973), A general method for estimating a linear structural equation. W: Structural equation models in the social sciences. A. Goldberger, O. Duncan (red.). Academic Press, New York, s. 85-112.
  • Jőreskog K. (1978), Structural analysis of covariance and correlation matrices. Psychometrika, 43, s. 443-447.
  • Jőreskog K. (1981), Analysis of covariance structures. Scandinavian Journal of Statistics, 8, s. 65-92.
  • Jőreskog K., Sőrbom D. (1984), LISREL VI User's guide. Scientific Software, Inc., Mooresville, IN.
  • Jőreskog K., Sőrbom D. (1990), Model search with TETRAD II and LISREL. Sociological Methods and Research, 19, s. 93-106.
  • Jőreskog K., Sőrbom J. (1993), LISREL 8: User's reference guide. Lawrence Erlbaum Associates, Hillsdale, NJ.
  • Kaas G.V. (1980), An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29, s. 119-127.
  • Kadane J., Seidenfeld T. (1990), Randomization in a Bayesian perspective. Journal of Statistical Planning and Inference, 25, s. 329-345.
  • Kaiser G., Caffrey K. (1965), Alpha factor analysis. Psychometrika, 30, s. 1-14.
  • Karpiński J. (1985), Przyczynowość w badaniach socjologicznych. PWN, Warszawa.
  • Kemeny J.G. (1967), Nauka w oczach filozofa. PWN, Warszawa.
  • Kenny D. (1979), Correlation and causality. Wiley, New York.
  • Kiiveri H. (1982), A unified approach to causal models. University of Western Australia, Melbourne.
  • Kiiveri H., Speed T. (1982), Structural analysis of multivariate data: A review. W: Sociological methodology. S. Leinhardt (red.). Jossey-Bass, San Francisco, s. 74-89.
  • Kiiveri H., Speed T., Carlin J. (1984), Recursive causal models. Journal of the Australian Mathematical Society, 36, s. 30-52.
  • Kim J.O., Mueller C.W. (1978 a), Factor analysis, statistical methods and practical issues. Beverly Hills, Sage.
  • Kim J.O., Mueller C.W. (1978 b), Introduction to factor analysis. What it is and how to do it. Beverly Hills, Sage.
  • Kitcher P. (1989), Explanatory unification and the causal structure of the world. W: Scientific explanation XIII. P. Kitcher, W. Salmon (red.). University of Minnesota Press, Minneapolis.
  • Klepper S. (1988), Regressor diagnostics for the classical errors in variables model. Journal of Econometrics, 37, s. 225-250.
  • Kline P. (1994), An easy guide to factor analysis. Routledge, London.
  • Kotarbiński T. (1965), Traktat o dobrej robocie. Ossolineum, Wrocław.
  • Krajewski W. (1967), Związek przyczynowy. PWN, Warszawa.
  • Krajewski W. (1998), Prawa nauki. Przegląd zagadnień metodologicznych i filozoficznych. Książka i Wiedza, Warszawa.
  • Kuipers B.J. (1984), Commonsense reasoning about causality: Deriving behavior from structure. Artificial Intelligence, 24, s. 169-204.
  • Kuipers B.J. (1986), Qualitative simulation. Artificial Intelligence, 29, s. 289-388.
  • Kuipers B.J. (1987), Qualitative simulation as causal explanation. IEEE Transactions on Systems, Man and Cybernetics, 17, s. 1-24.
  • Kuipers B.J. (1989), Qualitative reasoning: modeling and simulation with incomplete knowledge. Automatica, 25, s. 571-585.
  • Lauritzen S., Wermuth N. (1984), Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics, 17, s. 31-57.
  • Lazarsfeld P., Henry N. (1968), Latent structure analysis. Houghton Mifflin, Boston.
  • Lee S. (1985), Analysis of covariance and correlation structures. Computational Statistics and Data Analysis, 2, s. 279-295.
  • Loh W.Y., Shih Y.S. (1997), Split selection methods for classification trees. Statistica Sinica, 7, s. 815-840.
  • Lohmöller J. (1987), LVPLS Program Manual. Version 1.8. Zentralarchiv für Empirische Sozialforschung, Koln.
  • Lohmöller J. (1989), Latent variable path modeling with partial least squares. Physica-Verlag, Heidelberg.
  • Long J. (1983 a), Confirmatory factor analysis. Qualitative applications in the social sciences, 33, Sage Publications, Beverly Hills, CA.
  • Long J. (1983 b), Covariance structure models. Qualitative applications in the social sciences, 34, Sage Publications, Beverly Hills, CA.
  • Luijben T., Boomsma A., Molenaar I. (1986), Modification of factor analysis models in covariance structure analysis. A Monte Carlo study. W: Lecture Notes in Economics and Mathematical Systems 307. T. Dijkstra (red.). Springer-Verlag, Berlin.
  • MacCallum R. (1986), Specification searches in covariance structure modeling. Psychological Bulletin, 100, s. 107-120.
  • Mill J.S. (1962), System logiki. PWN, Warszawa.
  • Mingers J. (1989), An empirical comparison of selection measures for decision tree induction. Machine Learning, 3, s. 319-342.
  • Mueller R.O. (1996), Basic principles of structural equation modeling. Springer-Verlag, New York, 1996.
  • Muthen B. (1984), A general structural equation model with dichotornous, ordered categorical and continuous latent variable indicators. Psychometrica, 49, s. 115-132.
  • Mynarski S. (2002), Identyfikacja zależności przyczynowo-skutkowych (podejście interpretacyjne). W: Zależności przyczynowo-skutkowe w badaniach rynkowych i marketingowych. S. Mynarski (red.). AE, Kraków, s. 9-22.
  • Neopolitan R. (1990), Probabilistic reasoning in expert systems. Wiley, New York.
  • Nowak S. (1973), Conditional causal relations and their appoximations in the social sciences. W: Logic, methodology and philosophy of science IV. P. Suppes (red.). North-Holland, Amsterdam, s. 230-276.
  • O'Shaugnessy J. (1975), Metodologia decyzji. PWE, Warszawa.
  • Pawłowski Z.(1979), Ekonometria. PWN, Warszawa.
  • Pearl J. (1988), Probabilistic reasoning in intelligent systems. Morgan and Kaufman, San Mateo, CA.
  • Pearl J., Dechter R. (1989), Learning structure from data: A survey, Proceedings COLT '89. s. 30-244.
  • Pearl J., Geiger D., Verma T. (1990), The logic of influence diagrams. W: Influence diagrams, belief nets and decision analysis. R. Oliver, J. Smith (red.). John Wiley & Sons, New York.
  • Pearl J., Verma T. (1990), A formal theory of inductive causation. Technical Report R-155, Cognitive Systems Laboratory, Computer Science Dept. UCLA, Los Angeles, CA.
  • Pearl J., Verma T. (1991), A theory of inferred causation: principles of knowledge representation and reasoning. Proceedings of the Second International Conference, Morgan Kaufmann, San Mateo, CA.
  • Pearl J. (2001), Causality: models, reasoning and inference. Cambridge University Press, Cambridge.
  • Pluta W. (1977), Wielowymiarowa analiza porównawcza w badaniach ekonomicznych. PWE, Warszawa.
  • Popper K.R. (1977), Logika odkrycia naukowego. PWN, Warszawa.
  • Pratt J., Schlaifer R. (1988), On the interpretation and observation of laws. Journal of Econometrics, 39, s. 23-52.
  • Quinlan J.R. (1993), C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo.
  • Railton P. (1978), A deductive-nomological model of probabilistic explanation. Philosophy of Science, 45, s. 213-219.
  • Richardson (1994), Properties of cyclic graphical models, Master's Thesis, Department of Philosophy, Carnegie Mellon University, Pittsburgh.
  • Robins J. (1986), A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Mathematical Modeling, 7,s. 1393-1512.
  • Rodgers R., Maranto C. (1989), Causal models of publishing productivity in psychology. Journal of Applied Psychology, 74, s. 636-649.
  • Rosenbaum P. (1984), From association to causation in observational studies. Journal of the American Statistical Association, 79, s. 41-48.
  • Salmon W. (1984), Scientific explanation and the causal structure of the world. Princeton University Press, Princeton, N.J.
  • Saris W., Stronkhorst H. (1984), Causal modeling in nonexperimental research. Sociometric Research Foundation, Amsterdam.
  • Saunders D.R. (1960), A computer program to find the best-fitting orthogonal factors for a given hypothesis. Psychometrika, 25, s. 199-205.
  • Scheines R. (1993), Unidimensional linear latent variable models. Technical Report CMU-PHIL-39, Carnegie Mellon University, Pittsburgh, PA.
  • Scheines R., Spirtes P., Glymour C., Meek C. (1994), TETRAD II: tools for causal modeling, Lawrence Erlbaum, Hillsdale, New York.
  • Scheines R. (1994 a), Inferring causal structure among unmeasured variables. W: Selecting models from data: AI and Statistics IV. P. Cheeseman, R.W. Oldford (red.). Springer-Verlag, New York, s. 198-219.
  • Scheines R. (1994b), Causation, indistinguishability, and regression. W: SoftStat '93: Advances in statistical software. F. Faulbaum (red.). Gustav Fischer, New York, s.38-46.
  • Scheines R., Hoijtink H., Boomsma A. (1995), Bayesian estimation and testing of structural equation models. Technical Report CMU-PHIL-66, Department of Philosophy, Carnegie Mellon University, PA, 15213.
  • Simon H. (1953), Causal ordering and identifiability. W: Studies in econometric methods. T. Hood, H. Koopmans (red.). Wiley, New York, s. 49-74.
  • Simon H. (1977), Models of discovery. Reidel, Dordrecht.
  • Sims C. (1972), Money, income, and causality. American Economic Review, 62, s. 540--552.
  • Skyrms B. (1988), Probability and casuation. Journal of Econometrics, 39, s. 53-68.
  • Skyrms B. (1980), Causal necessity: A pragmatic investigation of the necessity of laws. Yale University Press, New Haven.
  • Sorbom. D. (1975), Detection of correlated errors in longitudinal data. British Journal of Mathematical and Statistical Psychology, 28, s.138-151.
  • Sorbom D. (1989), Model modification. Psychometrika, 54, s. 371-384.
  • Spirtes P., Glymour C. (1988), Latent variables, causal models and overidentifying constraints. Journal of Econometrics, 39, s. 175-198.
  • Spirtes P., Scheines R., Glymour C. (1990), Simulation studies of the reliability of computer aided specification using the TETRAD II, EQS, and LISREL programs. Sociological Methods and Research, 19, s. 3-66.
  • Spirtes P. (1995), Directed cyclic graphical representation of feedback models. W: Proceedings of the XI Conference on Uncertainty in Artificial Intelligence. P. Besnard, S. Hanks (red.). Morgan Kaufman, San Mateo, CA, s. 491-498.
  • Spirtes P., Meek C., Richardson T. (1995), Causal inference in the presence of latent variables and selection bias. W: Proceedings of the XI Conference on Uncertainty in Artificial Intelligence. P. Besnard, S. Hanks (red.). Morgan Kaufman, San Mateo, CA, s. 499-506.
  • Spirtes P., Glymour C., Scheines R. (2000), Causation, prediction, and search. MIT Press, Cambridge, Mass.
  • Suppes P. (1970), A probabilistic theory of causality. North-Holland, Amsterdam.
  • Sztemberg M. (1999), Wykorzystanie analizy czynnikowej do pozycjonowania kawy na rynku. W: Klasyfikacja i analiza danych - teoria i zastosowania. K. Jajuga, M. Walesiak (red.). Taksonomia, z. 6, Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 817, s. 131-143.
  • Sztemberg M., (2000), Konfirmacyjna analiza czynnikowa jako weryfikacja eksploracyjnej analizy czynnikowej. W: Pomiar w badaniach rynkowych i marketingowych. M. Walesiak (red.). Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 856, s. 92-100.
  • Tatarkiewicz W. (1999), Historia filozofii. 1.1-3. PWN, Warszawa.
  • Thomson G. (1935), On complete families of correlation coefficients and their tendency to zero tetrad-differences: Including a statement of the sampling theory of abilities. British Journal of Psychology, 26, s. 63-92.
  • Thurstone L. (1935), The vectors of mind. University of Chicago Press, Chicago.
  • Toda H.Y., Phillips P.C. (1993), Vector autoregression and causality. Econometrica, 61, s. 1367-1393.
  • Verma T., Pearl J. (1990 a), Equivalence and synthesis of causal models. Proceedings of the Sixth Conference on Uncertainty in AI. Association for Uncertainty in AI, Inc., Mountain View, CA.
  • Verma T., Pearl J. (1990 b), Causal networks: semantics and expressiveness. W: Uncertainty in Artificial Intelligence IV. R. Shachter, K. Levitt, L. Kanał, J. Lemer (red.). Elsevier Science Publishers, Amsterdam, s. 56-68.
  • Walesiak M. (1996), Metody analizy danych marketingowych. PWN, Warszawa.
  • Walesiak M., Bąk A. (1997), Wykorzystanie analizy czynnikowej w badaniach marketingowych. Badania Operacyjne i Decyzje, nr 1, s. 75-87.
  • Weisberg S. (1985), Applied linear regression. Wiley, New York.
  • Wermuth N. (1976), Model search among multiplicative models. Biometrika, 32, s. 253--363.
  • Wermuth N. (1980), Linear recursive equations, covariance selection and path analysis. Journal of the American Statistical Association, 75, s. 963-972.
  • Wilson E.B. (1964), Wstęp do badań naukowych. PWN, Warszawa.
  • Wishart J. (1928), Sampling errors in the theory of two factors. British Journal of Psychology, 19, s. 180-187.
  • Wold H. (1982), Soft modelling: the basic design and some extensions. W: Systems under indirect observation. K.G. Jóreskog, H. Wold (red.). North Holland, Amsterdam, s. 1-54.
  • Wold H. (1985), Partial least squares. W: Encyclopedia of Statistical Sciences. S. Kotz, N.L. Johnson (red.). John Wiley and Sons, New York, s. 581-591.
  • Zacny B. (2002), Testowanie zależności przyczynowych w modelach ekonometrycznych. W: Klasyfikacja i analiza danych - teoria i zastosowania. K. Jajuga, M. Walesiak (red.). Taksonomia, z. 9, Prace Naukowe Akademii Ekonomicznej we Wrocławiu nr 942, s.138-145.
  • Zakrzewska M. (1994), Analiza czynnikowa w budowaniu i sprawdzaniu modeli psychologicznych. Wydawnictwo UAM, Poznań.
  • Zhou X.J., Dillon T.S. (1991), A statistical-heuristic feature selection criterion for decision tree induction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13,s. 834-841.
  • Życiński J. (1996), Elementy filozofii nauki. Wydawnictwo Biblos, Tarnów.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.