Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 55 | z. 2 | 89--116
Tytuł artykułu

Introducing skewness into conditionally fat tailed GARCH processes: a Bayesian comparison

Warianty tytułu
Języki publikacji
The main goal of this paper is an application of Bayesian model comparison, based on the posterior probabilities and posterior odds ratios, in testing the explanatory power of the set of competing GARCH (ang. Generalised Autoregressive Conditionally Heteroscedastic) specifications, all with asymmetric and heavy tailed conditional distributions. In building competing volatility models we consider, as an initial specification, GARCH process with conditional Student-f distribution with unknown degrees of freedom parameter, proposed by Bollerslev in [8]. By introducing skewness into Student-? family and by application the resulting class as a conditional distribution we generated various GARCH models, which compete in explaining possible asymmetry of both conditional and unconditional distribution of financial data. In order to make Student-? family skewed we consider various alternative methods recently proposed in the literature. In particular, we apply the hidden truncation mechanism (see [3] and [ 1 ]), an approach based on the inverse scale factors in the positive and the negative orthant (see [13]), order statistics concept (see [21]), Beta distribution transformation (see [22]) and Bernstein density transformation (see [39]). Additionally, we consider GARCH process with conditional a-Stable distribution; see [43] and [40]. Based on the daily returns of hypothetical financial time series, we discuss the results of Bayesian comparison of alternative skewing mechanisms applied in the initial Student-r GARCH framework. We also check the sensitivity of model ranking with respect to structural changes in dynamics of considered time series. Additionally, we present formal Bayesian inference about conditional asymmetry of the distribution of the daily returns in all competing specifications on the basis of the skewness measure defined by Arnold and Groenveld in [2]. (abstract oryginalny)
Opis fizyczny
  • [1] Arnold B.C., Beaver R.J., [2002], Skewed Multivariate Models Related to the Hidden Truncation and/or Selective Reporting, lest 11, 7-54
  • [2] Arnold B.C., Groenveld R.A., [1995], Measuring Skewness with Respect to the Mode, „The American Statistician" 49, 34-38.
  • [3] Azzalini A., [1985], A Class of Distributions which Includes the Normal Ones, ..Scandinavian Journal of Statistics" 12, 171-178.
  • [4] Azzalini A., [1986], Further Results on A Class of Distributions which Includes the Normal Ones, „Statistica" 46, 199-208.
  • [5] Bauwens L., Lubrano M., [1997], Bayesian option pricing using asymmetric GARCH, CORE Discussion Paper No. 9759 Université Catholique de Louvain, Louvain-la-Neuve.
  • [6] Bauwens L., Lubrano M„ Richard J-E, [1999], Bayesian Inference in Dynamic Econometric Models, Oxford University Press, Oxford.
  • [7] Bollerslev T., [1986], Generalised Autoregressive Conditional Heteroscedasticity, ..Journal of Econometrics" 31, 307-327.
  • [8] Bollerslev T., [1987], A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return, „The Review of Economics and Statistics" 69, 542-47.
  • [9] Chen J., Hong H., Stein J.C., [2001], Forecasting Crashes: Trading Volume, Past Returns and Conditional Skewness in Stock Prices, Journal of Financial Economics" 61, 345-381.
  • [10] Christoffersen R, Heston S., Jacobs K., [2003], Option Valuation with Conditional Skewness, Working Paper, McGill University.
  • [11] Cont R., [2001], Empirical Properties of Asset Returns: Stylised Facts and Statistical Issues, Quantitative Finance" 1, 237-245.
  • [12] Doman M., Doman R., [2004], Ekonometryczne modelowanie dynamiki polskiego rynku finansowego, Wydawnictwo AE w Poznaniu, Poznan.
  • [13] Fernandez C, Steel M.F.J., [1998], On Bayesian Modelling of Fat Tails and Skewness, .Journal of the American Statistical Association" 93, 359-371.
  • [14] Ferreira J.T.A.S, Steel M.F.J., [2004], A Constructive Representation of Univariate Skewed Distributions, Department of Statistics University of Warwick technical report.
  • [15] Friend I., Westerfield R., [1980], Co-Skewness and Capital Asset Pricing, Journal of Finance" 35, 897-913.
  • [16] Glosten L.R., Jagannathan R., Runkle D.E., [1993], On the relation between the expected value and the volatility of the nominal excess return on stocks, ..Journal of Finance" 48, 1779-1801.
  • [17] Hansen B.E., [1994], Autoregressive Conditional Density Estimation, ..International Economic Review" 35, 705-730.
  • [18] Harvey C.R., Siddique A., [1999], Autoregressive Conditional Skewness, ..Journal of Finance and Quantitative Analysis" 34, 465-487.
  • [19] Harvey C.R., Siddique A., [2000], Conditional Skewness in Asset Pricing Models, ..Journal of Finance" 55, 1263-1295.
  • [20] Jeffreys H„ [1961], Theory of Probability, Oxford University Press, Oxford.
  • [21] Jones M.C., [2004], Families of Distributions Arising from Distributions of Order Statistics, Test 13, 1-43.
  • [22] Jones M.C., Faddy M.J., [2003], A Skew Extension of the t-Distribution, with Applications, Journal of Royal Statistical Association B" 65, 159-174.
  • [23] Kalimipalli M., Sivakumar R., [2003], Coes Skewness Matter? Evidence From the Index Options Market, Working Paper, Wilfrid Laurier University.
  • [24] Kim T.H., White A., [2004], One More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index, ..Finance Research Letters" 1, 56-70.
  • [25] Kraus A., Litzenberger R.H., [1976], Skewness Preference and the Valuation of Risk Assets, ..Journal of Finance" 31, 1085-1100.
  • [26] Lanne M., Saikkonnen P., [2004], A Skewed GARCH-In-Mean Model: An Application to U.S. Stock Returns, Unpublished manuscript.
  • [27] Lim K.-G., [1989], A New Test of the Three Moment Capital Asset Pricing Model, Journal of Financial and Quantitative Analysis" 24, 205-216.
  • [28] Liu S., Brorsen B.W, [1995], Maximum Likelihood Estimation of a GARCH Stable model, Journal of Applied Econometrics" 10, 273-285.
  • [29] Loretan, M., Phillips RC.B., [1994], Testing the Covariance Stationarity of Heavy Tailed Time Series, Journal of Empirical Finance" 1, 211-248.
  • [30] McCulloch J.H., [1985], Interest-Risk Sensitive Deposit Insurance Premia: Stable ARCH Estimates, Journal of Banking and Finance" 9, 137-156.
  • [31] Mittnik S., Doganoglu T., Chenyao D., [1999], Computing the Probability Density Function of the Stable Paretian Distribution, ..Mathematical and Computer Modelling" 29, 235-240.
  • [32] Nadarajah S., Kotz S., [2003], Skewed Distributions Generated by the Normal kernel, ..Statistics Probabilitv Letters" 65, 269-277. y
  • [33] Nelson D., [1991], Conditional Heteroskedasticity in Asset Returns: a New Approach Econometrica" 59, 347-370.
  • [34] Nolan J., [1999], AM Algorithm for Evaluating Stable Densities in Zolotarev's M Parameterisation, ..Mathematical and Computer Modelling" 29, 229-233.
  • [35] Osiewalski J., Pipień M., [1999], Bayesian Forecasting of Foreign Exchange Rates Using GARCH Models with Skewed-t Conditional Distributions, 25-th International Conference MACROMODELS'98 (ed ) Władysław Welfe, Łódź, 354-369.
  • [36] Osiewalski J., Pipień M., [2003], Univariate GARCH processes with asymmetries and GARCH-In-Mean effects: Bayesian analysis and direct option pricing, „Przegląd Statystyczny" 50, 5-29.
  • [37] Osiewalski J., Steel M.F.J., [1993], A Bayesian Perspective on Model Selection, paper published in Spanish: Una perspectiva bayesiana en selección de modelos, „Cuadernos Económicos" 55/3, 327-351.
  • [38] Pagan, A., [1996], The Econometrics of Financial Markets, Journal of Empirical Finance" 3, 15-102.
  • [39] Petrone S., Wasserman L., [2002], Consistency of Bernstein Polynomial Posteriors, Journal of Royal Statistical Association B" 64, 79-100.
  • [40] Pipień M., [2005], Value at Risk Estimates and Capital Requirements for Market Risk Obtained From GARCH Predictive Densities, „Acta Universitatis Lodziensis Folia Oeconomica" 190, 197-218.
  • [41] Polański Z., [1998], Rynek pieniężny w Polsce w drugiej połowie lat dziewięćdziesiątych: stan i perspektywy, „Prace Naukowe" Instytutu Badań nad Gospodarką Rynkową, Transformacja Gospodarki 96.
  • [42] Premarante G, Bera A., [2005], A Test for Symmetry with Leptókurtic Financial Data, „Journal of Financial Econometrics" 3, 169-187.
  • [43] Rachev S., Mittnik S., [2002], Stable Paretian Models in Finance, J. Wiley, New York.
  • [44] Richardson M., Smith T„ [1993], A Test for Multivariate Normality in Stock Returns, „Journal of Business" 66, 295-321.
  • [45] Singleton J.C., Wingerder J., [1986], Skewness Persistence in Common Stock Returns, „Journal of Financial and Quantitative Analysis" 21, 335-341.
  • [46] Theodossiou R, [1999], Financial Data and the Skewed Generalised-t Distribution, „Management Science" 4, 1650-1661.
  • [47] Theodossiou R, [2001], Skewed Generalised Error Distribution of Financial Assets and Option Pricing, Working Papers, School of Business, Rutgers University, New Jersey.
  • [48] Verhoeven R, McAleer M„ [2003], Fat Tails and Asymmetry in Financial Volatility Models, Faculty of Economics, University of Tokyo, CIRJE-F-211.
  • [49] Zolotarev U.M., [1961], On Analytic Properties of Stable Distribution Laws, ..Selected Translations in Mathematical Statistics and Probability" 1, 202-211.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.