PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | nr 5 | 611--622
Tytuł artykułu

Propozycja metody redukcji zbioru zmiennych grupujących opartej na koncentracji obiektów na sieci SOM

Warianty tytułu
Proposition of Reduction Variables Number Method Based on Object Concentration on SOM Network
Języki publikacji
PL
Abstrakty
Przedstawiono procedurę eliminacji zmiennych o najmniejszym potencjale dyskryminacyjnym opartą na pomiarze koncentracji obiektów na sieci Kohonena SOM. Istota metody została wyjaśniona w oparciu o dwa abstrakcyjne przykłady teoretyczne. Możliwości aplikacyjne zostały zaprezentowane w oparciu o jeden przykład empiryczny z polskiego rynku kapitałowego.
EN
The problem of selection of variables seems to be the key issue in classification of multi-dimensional objects. An optimal set of features should be made of only those variables, which are essential for the differentiation of studied objects. This selection may be made easier if a graphic analysis of an U-matrix is carried out. It allows to easily identify variables, which do not differentiate the studied objects. A graphic analysis may, however, not suffice to analyse data when an object is described with hundreds of variables. The author of the paper propose a procedure which allows to eliminate variables with the smallest discriminating potential based on the measurement of concentration of objects on the Kohonen self organising map networks. (original abstract)
Rocznik
Numer
Strony
611--622
Opis fizyczny
Twórcy
Bibliografia
  • Deboeck G., Kohonen T. (1998), Visual explorations in finance with Self-Organizing Maps, Springer-Verlag, London.
  • Gnanadesikan R., Kettenring J.R., Tsao S.L. (1995), Weighting and selection of variables for cluster analysis, Journal of Classification, vol. 12.
  • Kohonen T. (1997), Self-Organizing Maps, Springer Series in Information Sciences, Springer-Verlag, Berlin Heidelberg.
  • Migdał Najman K., Najman K. (2001), Zastosowanie sieci neuronowej typu SOM do wyboru najatrakcyjniejszych spółek na WGPW, Inwestycje finansowe i ubezpieczenia - tendencje światowe a polski rynek, Prace Naukowe Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Nr 952, Wrocław.
  • Migdał Najman K., Najman K. (2003), Zastosowanie sieci neuronowej typu SOM w badaniu przestrzennego zróżnicowania powiatów, Wiadomości Statystyczne nr 4.
  • Migdał Najman K., Najman K. (2006), Wykorzystanie indeksu silhouette do ustalania optymalnej liczby skupień, Wiadomości Statystyczne, Nr 6.
  • Migdał Najman K. (2006), Ocena wyniku grupowania w oparciu o indeks silhouette w: Konkurencyjność polskich przedsiębiorstw na rynku UE wybrane aspekty. Prace i Materiały Wydziału Zarządzania Uniwersytetu Gdańskiego nr 2.
  • Milligan G.W., Cooper M.C. (1985), An examination of procedures for determining the number of clusters in data set. Psychometrika, 50(2).
  • Rousseeuw PJ. (1987), Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20.
  • Vesanto J. (1997), Data Mining Techniques Based on the Self Organizing Map, Thesis for the degree of Master of Science in Engineering, Helsinki University of Technology.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000156721198

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.