Warianty tytułu
Języki publikacji
Abstrakty
Lactic Acid is known from 1780 as a sour component of milk. It is widely used in food, cosmetic, pharmaceutical industry. Now one of its enantiomers (L(+)-) is being used as a source material of poly-lactic acid (PLA). PLA is used for the production of biodegradable and compostable plastics. This review focuses on recent works leading to decrease the costs of production of L(+)-lactic acid and to optimize the conditions and medium composition of fermentation. (original abstract)
Kwas mlekowy znany jest od 1780 roku jako kwaśny składnik mleka. Znajduje szerokie zastosowanie w przemyśle spożywczym, kosmetycznym, farmaceutycznym. Jeden z jego enencjomerów (L(+)-) jest używany jako substrat do wytwarzania kwasu polimlekowego (PLA). PLA może być wykorzystywany do produkcji biodegradowalnych polimerów. Niniejszy artykuł stanowi przegląd ostatnich prac naukowych skupiających się na ograniczeniu kosztów produkcji kwasu L(+)-mlekowego na drodze optymizacji składu podłoża i warunków hodowli. (abstrakt oryginalny)
Rocznik
Tom
Numer
Strony
11--20
Opis fizyczny
Twórcy
autor
- Uniwersytet Ekonomiczny we Wrocławiu
autor
- Uniwersytet Ekonomiczny we Wrocławiu
Bibliografia
- Plessas S., Bosnea L., Psarianos C, Koutinas A. A., Marchant R., Banat I.M., Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. Bulgaricus and Lactobacillus helvetius, Bioresource Technol. 2008, 99, 5951-5955.
- Ding S., Tan T., L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies, Process Biochem. 2006, 41, 1451-1454.
- John R.P., Nampoothiri K.M., Pandey A., Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii, Process Biochem. 2006, 41, 759-763.
- Altaf Md., Naveena B.J., Venkateshwar M., Kumar E.V., Reddy G., Single step fermentation of starch to L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using inexpensive nitrogen sources to replace peptone and yeast extract - Optimization by RSM, Process Biochem. 2006, 41, 465-472.
- Petrov K., Urshev Z., Petrova P., L(+)-Lactic acid production from starch by a novel amylolytic Lactococcus lactis subsp. lactis B84, Food Microbiol. 2008, 25, 550-557.
- Naveena B.J., Altaf Md., Bhadrayya K., Madhavendra S.S., Reddy G., Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM, Process Biochem. 2005, 40, 681-690.
- Wee Y., Yun Y., Lee Y, Zeng A., Ryu H., Recovery of Lactic acid by repeated batch electrodialy-sis and Lactic acid production using electrodialysis wastewater, J. Biosci. Bioeng. 2005, 99/2, 104-108.
- Miura S., Arimura T., Hoshino M., Kojima M., Dwiarti L., Okabe M., Optimization and scale-up of L-Lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors, J. Biosci. Bioeng. 2003, 96/1, 65-69.
- Gao M., Kaneko M., Hirata M., Toorisaka E., Hano T., Utilization of rice bran as nutrient source for fermentative lactic acid production, Bioresource Technol. 2008, 99, 3659-3664.
- Sakai K., Ezaki Y, Open L-Lactic Acid Fermentation of Food Refuse Using Thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora, J. Biosci. Bioeng. 2006, 101/6, 457-463.
- Ghofar A., Ogawa S., Kokugan T., Production of L-Lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis, J. Biosci. Bioeng. 2005, 100/6, 606-612.
- Sakai K., Fujii N., Chukeatirote E., Racemization of L-Lactic acid in pH-swing open fermentation of kitchen refuse by selective proliferation of Lactobacillus plantarum, J. Biosci. Bioeng. 2006, 102/3, 227-232.
- Ha M., Kim S., Lee Y, Kim M., Kim S., Kinetics analysis of growth and Lactic acid production in pH-controlled batch cultures of Lactobacillus casei KH- 1 using yeast extract/corn steep liquor/glucose medium, J. Biosci. Bioeng. 2003, 96/2, 134-140.
- Xu Z., Wang Q., Wang R, Cheng G, Ji Y, Jiang Z., Production of lactic acid from soybean stalk hydrolysate with Lactobacillus sake and Lactobacillus casei, Process Biochem. 2007, 42, s. 89-92.
- Miura S., Arimura T., Itoda N., Dwiarti L., Feng J., Bin C., Okabe M., Production of L-Lactic acid from corncob, J. Biosci. Bioeng. 2004, 97/3, 153-157.
- Miura S., Dwiarti L., Arimura T., Hoshino M., Tiejun L., Okabe M., Enhanced production of L-Lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196, J. Biosci. Bioeng. 2004, 97/1, 19-23.
- Michelson T., Kask K.., Jogi E., Talpsep E., Suitso I., Nurk A., L(+)-Lactic acid producer Bacillus coagulans SIM-7 DSM14043 and its comparison with Lactobacillus delbrueckii ssp. lactis DSM 20073, Enzyme Microb. Tech. 2006, 39, 861-867.
- Sakai K, Yamanami T., Thermotolerant Bacillus licheniformis TY7 produces optically active L-Lactic acid from kitchen refuse under open condition, J. Biosci. Bioeng. 2006, 102/2, 132-134.
- Narita J., Nakahara S., Fukuda H., Kondo A., Efficient production of L-(+)-Lactic acid from raw starch by Streptococcus bovis 148, J. Biosci. Bioeng. 2004, 97/6, 423-425.
- Pescuma M., Elvira Man'a Hebert E. M., Mozzi F., Font de Valdcz G., Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content, Food Microbiol. 2008, 25,442-451.
- Liu T., Miura S., Yaguchi M., Arimura T., Park E. Y, Okabe M., Scale-up of L-Lactic acid production by mutant strain Rhizopus sp. MK-96-1196from 0.003 m3 to 5 m 3 in airlift bioreactors, J. Biosci. Bioeng. 2006,101/1, 9-12.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000165018720