Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | nr 4 | 45--71
Tytuł artykułu

Income and Consumption Inequality in Poland, 1998-2008

Warianty tytułu
Języki publikacji
This paper estimates a variety of inequality indices to study the evolution of income and consumption inequality in Poland between 1998 and 2008. We use robust methods to adjust for the impact of extremely large observations. We also conduct statistical tests on inequality changes using methods, which account for the complexity of the household sample design. All analyses are performed for the entire population, for rural and urban subpopulations, and for the three largest cities. The main result is that during 1998-2008 there was a statistically significant rise in economic inequalities in Poland, which depending on the inequality index, ranged from 8.7% to 19.6% in case of income distribution and from 6.5% to 12.3% in case of consumption distribution. Among the studied subpopulations, economic inequalities are both the highest and the fastest- growing in Warsaw, where consumption inequality as measured by the Gini index increased during the studied period by as much as almost 23%. (original abstract)
Opis fizyczny
  • University of Warsaw, Poland
  • University of Warsaw, Poland; Polish Academy of Sciences
  • Amiel Y., Cowell F., Polovin A. (1996), Inequality among the Kibbutzim, Economica, 63 (250), 63-85.
  • Bhattacharya D. (2007), Inference on Inequality from Household Survey Data, Journal of Econometrics, 137 (2), 674-707.
  • Biewen M. (2002), Bootstrap Inference for Inequality Mobility and Poverty Measurement, Journal of Econometrics, 108 (2), 317-342.
  • Biewen M., Jenkins S.P. (2006), Variance Estimation for Generalized Entropy and Atkinson Inequality Indices: the Complex Survey Data Case, Oxford Bulletin of Economics and Statistics, 68 (3), 371-383.
  • Binder D.A., Kovačević M.S. (1995), Estimating Some Measures of Income Inequality from Survey Data: an Application of the Estimating Equations Approach, Survey Methodology, 21 (2), 137-145.
  • Brandolini A. (2007), Measurement of Income Distribution in Supranational Entities: The Case of the European Union, in: S.P. Jenkins, J. Micklewright (eds.), Inequality and Poverty Re-Examined, Oxford University Press, New York.
  • Brandolini A., Smeeding T.M. (2008), Inequality: International Evidence, in: S.N. Durlauf, E.L. Blume, The New Palgrave Dictionary of Economics, 4, Basingstoke, Palgrave Macmillan.
  • Central Statistical Office (2008), Household Budget Surveys in 2007, CSO, Warszawa.
  • Cowell F.A. (1989), Sampling Variance and Decomposable Inequality Measures, Journal of Econometrics, 42(1), 27-42.
  • Cowell F.A. (2000), Measurement of Inequality, in: A.B. Atkinson, F. Bourguignon (eds.), Handbook of Income Distribution, Elsevier North Holland, Amsterdam.
  • Cowell F.A. (2008), Measuring Inequality, forthcoming in Oxford University Press,
  • Cowell F.A., Flachaire E. (2007), Income Distribution and Inequality Measurement: The Problem of Extreme Values, Journal of Econometrics, 141 (2), 1044-1072.
  • Cowell F.A., Victoria-Feser M.-P. (1996), Robustness Properties of Inequality Measures, Econometrica, 64 (1), 77-101.
  • Cowell F.A., Victoria-Feser M.-P. (2007), Robust Lorenz Curves: a Semi-parametric Approach, Journal of Economic Inequality, 5 (1), 21-35.
  • Daras T., Zienkowski L., Żółkiewski Z. (2006), Zróżnicowanie dochodów i sfera ubóstwa w Polsce w latach 1993-2004, Bank i Kredyt, 37 (11-12), 27-45.
  • Davidson R. (2009), Reliable Inference for the Gini Index, Journal of Econometrics, 150 (1), 30-40.
  • Deaton A. (1997), The Analysis of Household Surveys: a Microeconometric Approach to Development Policy, Johns Hopkins University Press, Baltimore, MD.
  • Deville J.C. (1999), Variance Estimation for Complex Statistics and Estimators: Linearization and Residual Techniques, Survey Methodology, 25 (2), 193-203.
  • Dupuis D., Victoria-Feser M.-P. (2006), A Robust Prediction Error Criterion for Pareto Modelling of Upper Tails, The Canadian Journal of Statistics, 34 (4), 639-658.
  • Jenkins S.P. (2006), SVYLORENZ: Stata Module to Derive Distribution-Free Variance Estimates From Complex Survey Data of Quantile Group Shares of a Total, and Cumulative Quantile Group Shares, Statistical Software Components Archive S456602, Boston College Department of Economics.
  • Jenkins S.P., Biewen M. (2005), SVYGEI SVYATK: Stata Module to Derive the Sampling Variances of Generalized Entropy and Atkinson Inequality Indices when Estimated from Complex Survey Data, Statistical Software Components Archive S453601, Boston College Department of Economics.
  • Jenkins S.P., Van Kerm P. (2009), The Measurement of Economic Inequality, in: W. Salverda, B. Nolan, T.M. Smeeding (eds.), Oxford Handbook on Economic Inequality, Oxford University Press.
  • Keane M.P., Prasad E.S. (2002), Inequality, Transfers and Growth: New Evidence from the Economic Transition in Poland, Review of Economics and Statistics, 84 (2), 324-341.
  • Keane M.P., Prasad E.S. (2006), Changes in the Structure of Earnings during the Polish Transition, Journal of Development Economics, 80 (2), 389-427.
  • Kish L., Frankel M.R. (1974), Inference from Complex Samples, Journal of the Royal Statistical Society B, 36 (1), 1-37.
  • Kordos J., Lednicki B., Zyra M. (2002), The Household Sample Surveys in Poland, Statistics in Transition, 5 (4), 555-589.
  • Kovačević M.S., Binder D.A. (1997), Variance Estimation for Measures of Income Inequality and Polarization, Journal of Official Statistics, 13 (1), 41-58.
  • Langel M., Tillé Y. (2009), Variance Estimation of the Quintile Share Ratio, Communication au Journées Suisses de la Statistique, Genève, Août.
  • Levy H., Morawski L. (2007), EUROMOD Country Report - Poland, unpublished.
  • Maasoumi E. (1997), Empirical Analyses of Inequality and Welfare, in: M.H. Pesaran, P. Schmidt (eds.), Handbook of Applied Econometrics: Microeconomics, Blackwell, Oxford.
  • Milanović B. (1999), Explaining the Increase in Inequality during Transition, Economics of Transition, 7 (2), 299-341.
  • Mills J.A., Zandvakili S. (1997), Statistical Inference via Bootstrapping for Measures of Inequality, Journal of Applied Econometrics, 12 (2), 133-150.
  • Mitra P., Yemtsov R. (2006), Increasing Inequality in Transition Economies: Is There More to Come?, World Bank Policy Research Working Paper, 4007.
  • Newell A., Socha M. (2007), The Polish Wage Inequality Explosion, Economics of Transition, 15 (4), 733-758.
  • Osier G. (2009), Variance Estimation for Complex Indicators of Poverty and Inequality using Linearization Techniques, Survey Research Methods, 3 (3), 167-195.
  • StataCorp. (2009), Stata Survey Data Reference Manual: Release 11, Stata Corporation, College Station TX.
  • Szulc A. (2000), Economic Transition, Poverty, and Inequality: Poland in the 1990s, Statistics in Transition, 4 (6), 997-1017.
  • Szulc A. (2003), Inequality During the Economic Transition in Poland: 1993-1999 Evidence, unpublished manuscript.
  • Szulc A. (2006), Poverty in Poland during the 1990s: Are the Results Robust?, Review of Income and Wealth, 52 (3), 423-448.
  • Szulc A. (2008), Checking the Consistency of Poverty in Poland: 1997-2003 Evidence, Post-Communist Economies, 20 (1), 33-55.
  • UNICEF (2009), TransMONEE 2009 Database, UNICEF Regional Office for CEE/CIS, Geneva.
  • Van Kerm P. (2007), Extreme Incomes and the Estimation of Poverty and Inequality Indicators from EU-SILC, IRISS Working Paper Series, 2007-01, IRISS at CEPS/INSTEAD.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.