PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 15 | nr 7 (1207) Klasyfikacja i analiza danych - teoria i zastosowania | 99--107
Tytuł artykułu

Estymacja Winsora w badaniach podmiotów gospodarczych

Autorzy
Warianty tytułu
Winsorization in Small Business Survey
Języki publikacji
PL
Abstrakty
W niniejszym artykule podjęto próbę empirycznej weryfikacji możliwości wykorzystania estymacji Winsora do szacowania informacji o działalności gospodarczej małych przedsiębiorstw w przekroju małych domen (tj. województw i sekcji PKD). Celem badania była ocena wpływu wyboru technik regresji odpornej stosowanej przy klasyfikacji podmiotów gospodarczych na wartości punktów granicznych w estymacji Winsora. (fragment tekstu)
EN
Business data are often highly skewed to the right for two reasons: occurrence of outliers and a large proportion of zeroes. If by chance several unusually large residuals should fall in the sample then applying estimator may grossly underestimate or overestimate the population totals. One technique to deal with this problem is to divide a sample into two parts basing on cutoff values. Observations outside preset cutoff values are modified to values closer to these coutoff values. This estimator is called the winsorized estimator. The affectivity of winsorized estimator depends on the choice of the cutoff values, and hence the methods used to estimate regression parameters used to calculate these cutoff values. In this paper we examine the problem of the choice of one of the robust regression techniques to determine which techniques resulted in the best performing winsorized estimator. Simulation study presented here shows that Sample Splitting Technique results in the largest percentage reduction in MSE. (original abstract)
Twórcy
  • Akademia Ekonomiczna w Poznaniu
Bibliografia
  • Chambers R. (1996), Robust Case-weighting for Multipurpose Establishment Surveys, „Journal c: Official Statistics", 12, s. 3-32.
  • Chambers R., Kokic P., Smith P., Cruddas M. (2000), Winsorizationfor Identifying and Treating Obliers in Business Surveys, Proceedings of the Second international Conference on Establishmer Surveys (ICES II), s. 687-696.
  • Clark R.G. (1995), Winsorization Methods in Sample Surveys, Masters thesis, Department of Statistics, Australian National University.
  • Gross W.F., Bode G., Taylor J.M., Lloyd-Smith C.W. (1986), Some Finite Population Estimators which Reduce the Contribution of Outliers, Proceedings of the Pacific Statistical Conference, 20- -24 May 1985, Auckland, New Zealand.
  • Hedlin D. (2004), Business Survey Estimation, R&D Report 2004:1, Statistics Sweden.
  • Hidiroglou M.H., Srinath K.P. (1981), Some Estimators of Population Total from Simple Random Samples Containing Large Units, „JASA" 76, s. 690-695.
  • Kokic P.N., Bell P.A. (1994), Optimal Winsorizing Cutoffs for a Stratified Finite Population Estimator, „Journal of Official Statistics" 10, s. 419-435.
  • Mackin C., Preston J. (2002), Winsorization for Generalised Regression Estimation, Australian Bureau of Statistics.
  • Rousseeuw P.J., Leroy P.M. (1987), Robust Regression and Outlier Detection, John Wiley & Sons.
  • Samdal C.-E., Swensson B., Wretman J.H. (1992), Model Assisted Survey Sampling, Springer-Verlag.
  • Searls D.T. (1966), An Estimator which Reduces Large True Observations, „JASA" 61, s. 1200-1204.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000168575617

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.