PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | nr 2 (25) | 117--136
Tytuł artykułu

Adaptive Rolling Plans Are Good

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Here we prove the goodness property of adaptive rolling plans in a multisector optimal growth model under decreasing returns in deterministic environment. Goodness is achieved as a result of fast convergence (at an asymptotically geometric rate) of the rolling plan to balanced growth path. Further on, while searching for goodness, we give a new proof of strong concavity of an indirect utility function – this result is achieved just with help of some elementary matrix algebra and differential calculus.(original abstract)
Rocznik
Numer
Strony
117--136
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
Bibliografia
  • Bala, V., Majumdar, M., Mitra, T., Decentralized evolutionary mechanism for intertemporal economies: A possibility result, “Journal of Economics” 53, pp. 1-29, 1991.
  • Benhabib, J., Nishimura, K., On the uniqueness of steady states in an economy with heterogeneous capital goods, “International Economic Review” 20, pp. 59-82, 1979a.
  • Benhabib, J., Nishimura, K., The Hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth, “Journal of Economic Theory” 21, pp. 421-444, 1979b.
  • Benhabib, J., Nishimura, K., Stability of equilibrium in dynamic models of capital theory, “International Economic Review” 22, pp. 275-293, 1981.
  • Gale, D., On optimal development in a multi-sector economy, “Review of Economic Studies” 34, pp. 1-18, 1967.
  • Goldman, S., Optimal growth and continual planning revision, “Review of Economic Studies” 35, pp. 145-154, 1968.
  • Hirota, M., Kuga, K., On an intrinsic joint production, “International Economic Review” 12, pp. 87-98, 1971.
  • Kaganovich, M., Rolling planning: Optimality and decentralization, “Journal of Economic Behavior and Organization” 29, pp. 173-185, 1996.
  • Kaganovich, M., Decentralized evolutionary mechanism of growth in a linear multi-sector model, “Metroeconomica” 49, pp. 349-363, 1998.
  • Lancaster, K., Mathematical economics. Macmillan, 1968.
  • Lancaster, P., Tismenetsky, M., The theory of matrices. Academic Press, 1985.
  • Lucas, R., Stokey, N., Recursive methods in economic dynamics. Harvard University Press, 1989.
  • McKenzie, L., Classical general equilibrium. MIT Press, 2002.
  • Nikaido, H., Convex structures and economic theory. Academic Press, 1968.
  • Takayama, A., Mathematical economics (2nd edition). Cambridge University Press, 1985.
  • Venditti, A., Strong concavity properties of indirect utility functions in multisector optima growth models, “Journal of Economic Theory” 74, pp. 349-367, 1997.
  • Vial, J.-P., Strong and weak convexity of sets and functions, “Mathematics of Operations Research” 8, pp. 231-259, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000168967900

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.