Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 2 | nr 2 | 151--167
Tytuł artykułu

Forecasting the Polish Zloty with Non-Linear Models

Treść / Zawartość
Warianty tytułu
Języki publikacji
The literature on exchange rate forecasting is vast. Many researchers have tested whether implications of theoretical economic models or the use of advanced econometric techniques can help explain future movements in exchange rates. The results of the empirical studies for major world currencies show that forecasts from a naive random walk tend to be comparable or even better than forecasts from more sophisticated models. In the case of the Polish zloty, the discussion in the literature on exchange rate forecasting is scarce. This article fills this gap by testing whether non-linear time series models are able to generate forecasts for the nominal exchange rate of the Polish zloty that are more accurate than forecasts from a random walk. Our results confirm the main findings from the literature, namely that it is dificult to outperform a naive random walk in exchange rate forecasting contest. (original abstract)
Opis fizyczny
  • National Bank of Poland; Warsaw School of Economics
  • National Bank of Poland
  • National Bank of Poland; Warsaw School of Economics
  • [1] Altavilla C., De Grauwe P., (2006), Forecasting and combining competing models of exchange rate determination, CESifo Working Paper Series 1747, Munich.
  • [2] Ardic O.P., Ergin O., Senol G.B., (2008), Exchange rate forecasting: Evidence from the emerging central and eastern European economies, MPRA Paper 7505, Munich.
  • [3] Berkowitz J., Giorgianni L., (2001), Long-horizon exchange rate predictability?, "Review of Economics and Statistics" 83, 81-91.
  • [4] Canova F., (1993), Modelling and forecasting exchange rates with a Bayesian time-varying coefficient model, "Journal of Economic Dynamics and Control" 17, 233-261.
  • [5] Cheung Y.-W., Chinn M.D., Pascual A.G., (2005), Empirical exchange rate models of the nineties: Are any fit to survive?, "Journal of International Money and Finance" 24, 1150-1175.
  • [6] Chinn M.D., Meese R.A., (1995), Banking on currency forecasts: How predictable is change in money?, Journal of International Economics 38, 161-178.
  • [7] Clements M.P., Harvey D.I., (2006), Forecast encompassing tests and probability forecasts, University of Warwick, Department of Economics Research Paper Series 774, Warwick.
  • [8] Cresp o-Cuaresma J., Hlouskova J., (2005), Beating the random walk in central and eastern Europe, "Journal of Forecasting" 24, 189-201.
  • [9] Dacco R., Satchell C., (1999), Why do regime-switching forecast so badly?, "Journal of Forecasting" 18, 1-16.
  • [10] De Grauwe P., Grimaldi M., (2006), The Exchange Rate in a Behavioral Finance Framework, Princeton University Press, New Jersey.
  • [11] Diebold F.X., Mariano R.S., (1995), Comparing predictive accuracy, "Journal of Business & Economic Statistics" 13, 134-144.
  • [12] Engel Ch., (1994), Can the Markov switching mo del forecast exchange rates?, Journal of International Economics 36, 151-165.
  • [13] Engel Ch., Hamilton J.D., (1990), Long swings in the dollar: Are they in the data and do markets know it?, "American Economic Review" 80, 689-713.
  • [14] Engel Ch., West K., (2005), Exchange rates and fundamentals, "Journal of Political Economy" 113, 485-517.
  • [15] Faust J., Rogers J., Wright J., (2003), Exchange rate forecasting errors we've really made, "Journal of International Economics" 60, 35-59.
  • [16] Frankel J.A., Froot K.A., (1990), Chartists, fundamentalists, and trading in the foreign exchange market, "American Economic Review" 80, 181-185.
  • [17] Geweke J., Porter-Hudak S., (1983), The estimation and application of long-memory time series models, "Journal of Time Series Analysis" 4, 221-228.
  • [18] Hamilton J.D., (1989), A new approach to the economic analysis of nonstationary time series and the business cycle, "Econometrica" 57, 357-384.
  • [19] Hamilton J.D., (1990), Analysis of time series sub ject to changes in regime, "Journal of Econometrics" 45, 39-70.
  • [20] Hamilton J.D., (1994), Time Series Analysis , Princeton University Press, New Jersey.
  • [21] Harvey D., Leybourne S., Newbold P., (1997), Testing the equality of prediction mean squared errors, "International Journal of Forecasting" 13, 281-291.
  • [22] Kanzler L., (1998), GPH: MATLAB mo dule to calculate Geweke-Porter-Hudak long memory statistic, Boston College Department of Economics Statistical Software Components T850805, Boston.
  • [23] Kilian L., (1999), Exchange rates and monetary fundamentals: What do we learn from long-horizon regressions?, "Journal of Applied Econometrics" 14, 491-510.
  • [24] Kilian L., Taylor M. P., (2003), Why is it so difficult to beat the random walk forecast of exchange rates?, "Journal of International Economics" 60, 85-107.
  • [25] Kirikos D.G., (2000), Forecasting exchange rates out of sample: Random walk vs Markov switching regimes, "Applied Economics Letters" 7, 133-136.
  • [26] Krolzig H.M., (2000), Predicting Markov-switching vector autoregressive processes, Nuffield College Economics Discussion Paper 31, Oxford.
  • [27] Maravall A., del Rio A., (2001), Time aggregation and the Ho drick-Prescott lter, Banco de Espa ~ na Working Papers 0108, Madrid.
  • [28] Mark N., (1995), Exchange rates and fundamentals: Evidence on long-horizon predictability, "American Economic Review" 85, 201-218.
  • [29] McCarthy J., DiSario R., Saraoglu H., (2003), A recursive algorithm for fractionally differencing long data series, "Journal of Modern Applied Statistical Methods" 2, 272-278.
  • [30] Meese R.A., Rogo K., (1983), Empirical exchange rate models of the 70s. Do they fit out of sample?, "Journal of International Economics" 14, 3-24.
  • [31] Meese R.A., Rose A.K., (1990), Nonlinear, nonparametric, nonessential exchange rate estimation, "American Economic Review" 80, 192-196.
  • [32] Neely J., Sarno L., (2002), How well do monetary fundamentals forecast exchange rates?, "Federal Reserve Bank of St. Louis Review" 84, 51-74.
  • [33] Newey W.K., West K.D., (1987), A simple, positive semi-deffinite, heteroskedasticity and autocorrelation consistent covariance matrix, "Econometrica" 55, 703-708.
  • [34] Newey W.K., West K.D., (1994), Automatic lag selection in covariance matrix estimation, "Review of Economic Studies" 61, 631-653.
  • [35] Perlin M., (2007), MS_Regress - A package for Markov regime switching models in Matlab, central/leexchange/authors/21596
  • [36] Romer Ch.D., Romer D.H., (2000), Federal Reserve information and the b ehavior of interest rates, American Economic Review 90, 429-457.
  • [37] Rumelhart D.E., Hinton D.E., Williams R.J., (1986), Learning internal representation by error propagation, [in:] Parallel Distributed Processing: Exploration in the Microstructure of Cognition [ed.:] Rumelhart D.E., McClelland J.L. , MIT Press, Cambridge MA, 318-362.
  • [38] Taylor M.P., Peel D.A., Sarno L. (2001) Nonlinear Mean-Reversion in Real Exchange Rates: Toward a Solution to the Purchasing Power Parity Puzzles, "International Economic Review" 42, 1015-42.
  • [39] Terasvirta T., Anderson H.M., (1992), Characterizing nonlinearities in business cycles using smooth transition autoregressive models, "Journal of Applied Econometrics" 7, 119-136.
  • [40] Wol Ch., (1987), Time-varying parameters and the out-of-sample forecasting performance of structural exchange rate models, "Journal of Business and Economic Statistics" 5, 87-97.
  • [41] Yu L., Wang S., Lai K.K., (2007), Foreign-Exchange-Rate Forecasting with articial neural networks, Springer, New York.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.