Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 2 | nr 3 | 169--193
Tytuł artykułu

Bireference Procedure fBIP for Interactive Multicriteria Optimization with Fuzzy Coefficients

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the paper an approach to decision making in situations with non-pointlike characterisation and subjective evaluation of the actions is considered. The decision situation is represented mathematically as fuzzy multiobjective linear programming (fMOLP) model, where we apply the reduced fuzzy matrices instead of fuzzy classical numbers. The fMOLP model with reduced parameters is decomposable into the set of point-like models and the point-like models enable effective construction of an optimisation procedure - fBIP, see Wojewnik (2006ab), extending the bireference procedure by Michalowski and Szapiro (1992). The approach is applied to a fuzzy optimization problem in the area of telecommunication services. (original abstract)
Opis fizyczny
  • Warsaw School of Economics, Poland
  • Warsaw School of Economics, Poland
  • [1] Aronson E., Wieczorkowska G. (2001) Control of our thoughts and feelings. J. Santorski & Co., Warsaw.
  • [2] Baptistella L.F.B., Ollero A. (1980) Fuzzy Methodologies for Interactive Multicriteria Optimization. "IEEE Trans. SMC" 10(7) 355-365.
  • [3] Benayoun R., J. Montgolfier, J. Tereny, O. Laritchev (1970) Linear Programming with Multiple Objective Functions: STEP Method (STEM). "Mathematical Prog."1, 366-375.
  • [4] Choo E.U., Atkins D.R. (1980) An interactive algorithm for multicriteria programming. "Comput. & Ops Res." 7, 81-87.
  • [5] Glezer V.D. (2009) The meaning of the Weber-Fechner law and description of scenes: III. Description of the visual space. "Human Physiology" 35(1) 16-20.
  • [6] Haimes Y.Y., Hall W.A. (1974) Multiobjectives in Water Resource Systems Analysis: The Surrogate Worth Trade Off Method. "Water Resources Research" 10(4) 615-624.
  • [7] Hwang C.-L., Lai Y.-J., Ko M.-D. (1993) ISGP-II For multiobjective optimization with imprecise objective coefficients. "Computers Ops Res." 20(5) 503-514.
  • [8] Jaszkiewicz A., Slowinski R. (1999) The "Light Beam Search" approach - an overview of methodology and applications. "EJOR" 113, 300-314.
  • [9] Kahneman D., Tversky A. (1979) Prospect theory: An analysis of decisions under risk. "Econometrica" 47, 313-327.
  • [10] Kaliszewski I. (2004) Out if the mist-towards decision-maker-friendly multiple criteria decision making support. "EJOR" 158, 293-307.
  • [11] Kaliszewski I. (2006) Soft Computing for Complex Multiple Criteria Decision Making. Operations Research & Management Science, Vol. 85, Springer Verlag.
  • [12] Lai Y.-J., Hwang C.-L. (1992) Interactive fuzzy linear programming. "Fuzzy Sets and Systems" 45, 169-183.
  • [13] Luque M.,F. Ruiz, R.E. Steuer (2010) Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. "EJOR" 204 (3) 557-564.
  • [14] Michalowski W., Szapiro T. (1992) A Bi-Reference Procedure for Interactive Multiple Criteria Programming. "Operations Research" 40(2) 247-258
  • [15] Michnik J.S. (2000) Asset & Liability Management in a Commercial Bank with Optimization Methods. PhD Thesis. University of Economics in Katowice (in Polish).
  • [16] Mohan C., Nguyen H.T. (1998) Reference direction interactive method for solving multiobjective fuzzy programming problems. "EJOR" 107, 599-613.
  • [17] Polak P., T. Szapiro (2001) On Testing Performance of a Negotiation Procedure in Distributed Environment (in M. Köksalan and S. Zionts (ed.) Proc. XV Int. Conf. on MCDM, Ankara, Turkey, Lecture Notes in Economics and Mathematical Systems 507, XII, 93-100.
  • [18] Rommelfanger H. (1989) Interactive decision making in fuzzy linear optimization problems. "EJOR", 210-217.
  • [19] Roy B., D. Vanderpooten (1996) The European School of MCDA: Emergence, Basic Features and Current Works. "JMCDA" 5, 22-38.
  • [20] Sakawa M. (1981) Interactive multiobjective reliability design of a standby system by the sequential proxy optimization technique (SPOT), "International Journal of Systems Science" 12(6) 687-701.
  • [21] Sakawa M., Yano H. (1985) Interactive fuzzy decision-makingmfor multi-objective non-linear prorgamming using reference membership intervals. "Int J Man- Machine Studies" 23, 407-421.
  • [22] Sasaki M., Gen M. (1993) An Extension of Interactive Method for Solving Multiple Objective Linear Programming with Fuzzy Parameters. "Computers and Industrial Engineering" 25(1-4) 9-12.
  • [23] Sasaki M., Gen M., Ida K. (1990) Interactive Sequential Fuzzy Goal Programming. "Computers and Engng" 19(1-4) 567-571.
  • [24] Selim H., I. Ozkarahan (2008) A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. "Int J Adv Manuf Technol" 36, 401-418.
  • [25] Simon H., Langley P., Bradshaw G., Zytkow J. (1987) Scientific Discovery: computational explorations of the creative processes. MIT Press.
  • [26] Slowinski R. (1986) A Multicriteria Fuzzy Linear Programming Method for Water Supply System Development Planning. "Fuzzy Sets and Systems" 19, 217-237.
  • [27] Slowinski R.(1984) Multicriteria linear programming methods - Overview, Part I. "Statistical Review" 31 (1-2) 47-64 (in Polish), Multicriteria linear programming methods - Overview , Part II. "Statistical Review" 31 (3-4) 303-318
  • [28] Swets J.A., Green D.M., Getty D.J., Swets J.B. (1978) Signal Detection and Identification at Successive Stages of Observation. "Perception and Psychophysics" 23, 275-289.
  • [29] Szapiro T. (1993) Convergence of the Bi-Reference Procedure in Multiple Criteria Decision Making. "Ricerca Operativa", vol. 23, no 66, 65-86.
  • [30] Thaler (1987, 1990) Anomalies. "Journal of Economic Perspectives"
  • [31] Trzaskalik T., J. Michnik (2002) Mulitple objective and goal programming: recent developments. Physica-Verlag Heidelberg, NY.
  • [32] Wieczorkowska-Siarkiewicz G. (1992) Point-like and sectional goal representation. Conditions and consequences. Psychology. Psychology Faculty, Warsaw University (in Polish).
  • [33] Wierzbicki A.P. (1982) A Mathematical Basis for Satisficing Decision Making. "Mathematical Modelling" 3, 391-405.
  • [34] Wierzbicki A.P. (1986) On the Completeness and Constructiveness of Parametric Characterizations to Vector Optimization Problems, "OR Spektrum" 8, 73-87.
  • [35] Wojewnik P. (2006a) Interactive multicriteria procedure for fuzzy constrained decisions (in Welfe A. (ed.) Quantitative Methods in Economic Science, Warsaw, 215-233 (in Polish).
  • [36] Wojewnik P. (2006b) Interactive decision support for telecommunication investments (in Trzaskalik T. (ed.) Modelling the Risk and Preference Modeling'06, Scientific publications of Economic University in Katowice, 487-499 (in Polish).
  • [37] Zionts S., Wallenius J. (1983) An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions. "Management Science" 29(5) 519-529
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.