Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 3 | nr 4 | 187--219
Tytuł artykułu

Bayesian Analysis of a Regime Switching In-Mean Effect for the Polish Stock Market

Treść / Zawartość
Warianty tytułu
Języki publikacji
The study aims at a statistical verification of breaks in the risk-return relationship for shares of individual companies quoted at the Warsaw Stock Exchange. To this end a stochastic volatility model incorporating Markov switching in-mean effect (SV-MS-M) is employed. We argue that neglecting possible regime changes in the relation between expected return and volatility within an ordinary SV-M specification may lead to spurious insignificance of the risk premium parameter (as being 'averaged out' over the regimes). Therefore, we allow the volatility-in-mean effect to switch over different regimes according to a discrete homogeneous two- or three-state Markov chain. The model is handled within Bayesian framework, which allows to fully account for the uncertainty of model parameters, latent conditional variances and state variables. MCMC methods, including the Gibbs sampler, Metropolis-Hastings algorithm and the forward-filtering-backward-sampling scheme are suitably adopted to obtain posterior densities of interest as well as marginal data density. The latter allows for a formal model comparison in terms of the in-sample fit and, thereby, inference on the 'adequate' number of the risk premium regimes. (original abstract)
Opis fizyczny
  • Cracow University of Economics, Poland
  • [1] Abanto-Valle C.A., Migon H.S., Lachos V.H., (2011), Stochastic volatility in mean models with scale mixtures of normal distributions and correlated errors: A Bayesian approach, Journal of Statistical Planning and Inference 141, 1875-1887.
  • [2] Backus D.K., Gregory A.W., (1993), Theoretical Relations Between Risk Premiums and Conditional Variances, Journal of Business & Economic Statistics 11(2), 177-185.
  • [3] Bauwens L., Lubrano M., (1998), Bayesian inference on GARCH models using the Gibbs sampler, Econometrics Journal 1, C23-C46.
  • [4] Bollerslev T., Engle R.F., Wooldridge J.M., (1988), A Capital Asset Pricing Model with Time-Varying Covariances, Journal of Political Economy 96(1).
  • [5] Bollerslev T., Zhou H., (2006), Volatility puzzles: a simple framework for gauging return-volatility regressions, Journal of Econometric 131, 123-150.
  • [6] Campbell J.Y., (1987), Stock returns and the term structure, Journal of Financial Economics 18(2).
  • [7] Carter C.K., Kohn R., (1994), On Gibbs sampling for state space models, Biometrika 81, 541-553.
  • [8] Chib S., (1996), Calculating posterior distributions and modal estimates in Markov mixture models, Journal of Econometrics 75, 79-97.
  • [9] Chou R., Engle R.F., Kane A., (1992), Measuring Risk Aversion from Excess Returns on a Stock Index, Journal of Econometrics 52, 201-224.
  • [10] Clark P.K., (1973), A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica 41.
  • [11] Darrat A.F., Gilley O.W., Li B., Wu Y., (2011), Revisiting the risk/return relations in the Asian Pacific Markets: New evidence from alternative models, Journal of Business Research 64, 199-206.
  • [12] David A., Veronesi P., (2009), What Ties Return Volatilities to Price Valuations and Fundamentals?, Chicago Booth Research Working Paper No. 10-05, available at:
  • [13] Doman M., (2008), Information Impact on Stock Price Dynamics [in:] Dynamic Econometric Models 8, [ed.:] Z. Zieliński, Toruń, 13-20.
  • [14] Engle R.F., Lilien D.M., Robins R.P., (1987), Estimating time varying risk premia in the term structure: The ARCH-M model, Econometrica 55, 525-542.
  • [15] Fiszeder P., Kwiatkowski J., (2005a), Model GARCH-M ze zmiennym parametrem - analiza wybranych spó?ek i indeksów notowanych na GPW w Warszawie (GARCH-M Model with Time-Varying Parameter - Analysis of Selected Stock and Indices Quoted on the WSE, in Polish), Statistical Review (Przegląd Statystyczny) 52 (no. 3), 73-88.
  • [16] Fiszeder P., Kwiatkowski J., (2005b), Dynamic Analysis of Relation between Expected Return and Conditional Variance, Acta Universitatis Nicolai Copernici 372, 85-98.
  • [17] French K.R., Schwert G.W., Stambaugh R.F., (1987), Expected stock returns and volatility, Journal of Financial Economics 19(1).
  • [18] Gennotte G., Marsh T.A., (1993), Variations in economic uncertainty and risk premiums on capital assets, European Economic Review 37(5).
  • [19] Glosten L.R., Jagannathan R., Runkle D.E., (1993), On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance 48, 1791-1801.
  • [20] Guo H., Neely C.J., (2008), Investigating the intertemporal risk-return relation in international stock markets with component GARCH model, Economics Letters 99.
  • [21] Guo H., Whitelaw R., (2006), Uncovering the risk return relation in the stock market, Journal of Finance 2(61).
  • [22] Hamilton J. D., (1989), A New approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 57, 357-384.
  • [23] Harrison P., Zhang H., (1999), An investigation of the risk and return relation at long horizons, Review of Economics and Statistics 81(3).
  • [24] Harvey C.R., (1989), Time-varying conditional covariances in tests of asset pricing models, Journal of Financial Economics 24(2).
  • [25] Hibbert A.M., Daigler R.T., Dupoyet B., (2008), A behavioral explanation for the negative asymmetric return volatility relation, Journal of Banking and Finance vol. 32.
  • [26] Jacquier E., Polson N., Rossi P., (1994), Bayesian analysis of stochastic volatility models (with discussion), Journal of Business & Economic Statistics 12, 371-417.
  • [27] Jacquier E., Polson N., Rossi P., (1999), Stochastic Volatility: Univariate and Multivariate Extensions, Cahiers CIRANO, Centre Interunivesitaire de Recherche en Analyse des Organisations, Montréal.
  • [28] Jacquier E., Polson N., Rossi P., (2004), Bayesian Analysis of Stochastic Volatility Models with Fat-tails and Correlated Errors, Journal of Econometrics 122, 185-212.
  • [29] Kalimipalli M., Susmel R., (2001), Regime-switching stochastic volatility and short-term interest rates, CEMA Working Papers, available at:
  • [30] Kim S.-W., Lee B.-S., (2008), Stock returns, asymmetric volatility, risk aversion, and business cycle: some new evidence, Economic Inquiry 46(2), 131-148.
  • [31] Koopman S.J., Hol Uspensky E., (2002), The Stochastic Volatility In Mean Model: Empirical Evidence from International Stock Markets, Journal of Applied Econometrics 17, 667-689.
  • [32] Krolzig H.-M., (1997), Markov-Switching Vector Autoregressions: Modelling, Statistical Inference, and Application to Business Cycle Analysis, Lecture Notes in Economics and Mathematical Systems, New York/Berlin/Heidelberg: Springer.
  • [33] Kwiatkowski Ł., (2010), Markov Switching In-Mean Effect. Bayesian Analysis in Stochastic Volatility Framework, Central European Journal of Economic Modelling and Econometrics 2(1), 59-94.
  • [34] Li Q., Yang J., Hsiao C., Chang Y.-J., (2005), The relationship between stock returns and volatility in international stock markets, Journal of Empirical Finance 12.
  • [35] Loudon G.F., (2006), Is the risk-return relation positive? Further evidence from a stochastic volatility in mean approach, Applied Financial Economics 16, 981-992.
  • [36] Ludvigson S., Ng S., (2007), The empirical risk-return relation: A factor analysis approach, Journal of Financial Economics 83(1).
  • [37] Nelson D.B., (1991), Conditional Heteroskedasticity in Asset Returns: A New Approach, Econometrica 59, 347-370.
  • [38] Newton M.A., Raftery A.E., (1994), Approximate Bayesian inference by Weighted Likelihood Bootstrap (with discussion), Journal of the Royal Statistical Society, series B 56, 3-48.
  • [39] Osiewalski J., Pipień M., (2000), GARCH-In-Mean through skewed t conditional distributions: Bayesian inference for exchange rates, [in:] 26-th International Conference MACROMODELS'99, [ed:] W. Welfe, P. Wdowiński, Łódź, 354-369.
  • [40] Pajor A., (2003), Procesy zmienności stochastycznej SV w bayesowskiej analizie finansowych szeregów czasowych (Stochastic Volatility Processes in Bayesian Analysis of Financial Time Series, in Polish), Cracow University of Economics.
  • [41] Pipień M., (2007), An approach to measuring the relation between risk and return. Bayesian analysis for WIG data, Folia Oeconomica Cracoviensia 48, 95-117
  • [42] Pipień M., Osiewalski J., (2001), Model GARCH-M(1,1): specyfikacja i estymacja bayesowska (A GARCH-M(1,1) Model: Specification and Bayesian Estimation, in Polish), Prace Naukowe Akademii Ekonomicznej we Wrocławiu (no. 895), 188-197.
  • [43] Scruggs J.T., (1998), Resolving the Puzzling Intertemporal Relation between the Market Risk Premium and Conditional Market Variance: A Two-Factor Approach, Journal of Finance 53, 575-603.
  • [44] Shibata M., Watanabe T., (2005), Bayesian analysis of a Markov switching stochastic volatility model, Journal of Japan Statistical Society 35, 205-219.
  • [45] Smith D. R., (2007), Risk and Return in Stochastic Volatility Models: Volatility Feedback Matters!, Working Paper, available at:
  • [46] So M. K. P., Lam K., Li W. K., (1998), A stochastic volatility model with Markov switching, Journal of Business & Economic Statistics 16, 244-253.
  • [47] Taylor S.J., (1982), Financial returns modelled by the product of two stochastic processes - a study of daily sugar prices 1961-79 [in:] Time Series Analysis: Theory and Practice 1, [ed.:] O.D. Anderson, Amsterdam, North-Holland, 203-226.
  • [48] Taylor S.J., (1986), Modelling Financial Time Series, Wiley, Chichester.
  • [49] Taylor S.J., (2005), Asset Price Dynamics, Volatility, and Prediction, Princeton University Press.
  • [50] Veronesi P., (2000), How Does Information Quality Affect Stock Returns?, The Journal of Finance 55(2).
  • [51] Watanabe T., (1999), A non-linear filtering approach to stochastic volatility models with an application to daily stock returns, Journal of Applied Econometrics 14.
  • [52] Whitelaw R.F., (1994), Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns, Journal of Finance 49(2).
  • [53] Whitelaw R.F., (2000), Stock Market Risk and Return: An Equilibrium Approach, The Review of Financial Studies 13(3).
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.