Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 4 | nr 3 | 143--167
Tytuł artykułu

Using VARs and TVP-VARs with Many Macroeconomic Variables

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A wide range of approaches are surveyed which aim to overcome the resulting problems. We stress the related themes of prior shrinkage, model averaging and model selection. Subsequently, we consider a particular modelling approach in detail. This involves the use of dynamic model selection methods with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set illustrates the practicality and empirical success of our approach. (original abstract)
Opis fizyczny
  • University of Strathclyde, United Kingdom
  • [1] Andersson, M. and Karlsson, S. (2009). "Bayesian forecast combination for VAR models", p. 501-524 [in:] S. Chib, W. Griffiths, G. Koop and D. Terrell (eds.), Advances in Econometrics, Vol. 23, Emerald Group: Bingley, UK.
  • [2] Andrieu, C., Doucet, A. and Holenstein, R. (2010). "Particle Markov chain Monte Carlo methods", Journal of the Royal Statistical Society: Series B, 72, 269-342.
  • [3] Banbura, M., Giannone, D. and Reichlin, L. (2010). "Large Bayesian Vector Auto Regressions", Journal of Applied Econometrics, 25, 71-92.
  • [4] Belmonte, M. and Koop, G. (2013). "Model switching and model averaging in time-varying parameter regression models", manuscript.
  • [5] Carriero, A., Clark, T. and Marcellino, M. (2011). "Bayesian VARs: Specification choices and forecast accuracy", Working Paper 1112, Federal Reserve Bank of Cleveland.
  • [6] Carriero, A., Kapetanios, G. and Marcellino, M. (2009). "Forecasting exchange rates with a large Bayesian VAR", International Journal of Forecasting, 25, 400417.
  • [7] Chipman, H., George, E. and McCulloch, R. (2001). "The practical implementation of Bayesian model selection", pages 65-134 in Institute of Mathematical Statistics Lecture Notes - Monograph Series, Volume 38, edited by P. Lahiri.
  • [8] Cogley, T. and Sargent, T. (2001). "Evolving post-World War II inflation dynamics", NBER Macroeconomic Annual, 16, 331-373.
  • [9] Cogley, T. and Sargent, T. (2005). "Drifts and volatilities: Monetary policies and outcomes in the post WWII U.S", Review of Economic Dynamics, 8, 262-302.
  • [10] De Mol, C., Giannone, D. and Reichlin, L. (2008). "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?" Journal of Econometrics, 146, 318-328.
  • [11] Del Negro, M. and F. Schorfheide (2008). "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)", Journal of Monetary Economics, 55, 1191-1208.
  • [12] Ding, S. and Karlsson, S. (2012). "Model averaging and variable selection in VAR models", manuscript.
  • [13] Doan, T., Litterman, R. and Sims, C. (1984). "Forecasting and conditional projection using realistic prior distributions", Econometric Reviews, 3, 1-144.
  • [14] Durbin, J. and Koopman, S. (2001). Time Series Analysis by State Space Methods. Oxford: Oxford University Press.
  • [15] Durham, G. and Geweke, J. (2012). "Adaptive sequential posterior simulators for massively parallel computing environments", manuscript.
  • [16] Fernandez, C., Ley, E. and Steel, M. (2001). "Model uncertainty in cross-country growth regressions", Journal of Applied Econometrics, 16, 563-576.
  • [17] Forni M., Hallin M., Lippi, M. and Reichlin, L. (2000). "The generalized dynamic factor model: identification and estimation" Review of Economics and Statistics 82: 540-554.
  • [18] Gefang, D. (2012). "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage", manuscript.
  • [19] George, E., Sun, D. and Ni, S. (2008). "Bayesian stochastic search for VAR model restrictions", Journal of Econometrics, 142, 553-580.
  • [20] Giannone, D., Lenza, M., Momferatou, D. and Onorante, L. (2010). "Short-term inflation projections: a Bayesian vector autoregressive approach", ECARES working paper 2010-011, Universite Libre de Bruxelles.
  • [21] Giannone, D., Lenza, M. and Primiceri, G. (2012). "Prior selection for vector autoregressions", Centre for Economic Policy Research, working paper 8755.
  • [22] Kadiyala, K. and Karlsson, S. (1997). "Numerical methods for estimation and inference in Bayesian VAR models", Journal of Applied Econometrics, 12, 99132.
  • [23] Koop, G. (2011). "Forecasting with medium and large Bayesian VARs", Journal of Applied Econometrics, first published online 2011: DOI: 10.1002/jae.1270.
  • [24] Koop, G. (2012). "Forecasting with dimension switching VARs", manuscript.
  • [25] Koop, G. and Korobilis, D. (2009). "Bayesian multivariate time series methods for empirical macroeconomics", Foundations and Trends in Econometrics, 3, 267358.
  • [26] Koop, G. and Korobilis, D. (2012). "Large time-varying parameter VARs", Journal of Econometrics, forthcoming.
  • [27] Korobilis, D. (2012). "VAR forecasting using Bayesian variable selection", Journal of Applied Econometrics, forthcoming.
  • [28] Korobilis, D. (2013). "Bayesian forecasting with highly correlated predictors", Economics Letters, forthcoming.
  • [29] Madigan, D. and York, J. (1995). "Bayesian Graphical Models for Discrete Data", International Statistical Review, 63, 215-232.
  • [30] Park, T. and Casella, G. (2008). "The Bayesian Lasso", Journal of the American Statistical Association, 103, 681-686.
  • [31] Primiceri. G., (2005). "Time varying structural vector autoregressions and monetary policy", Review of Economic Studies, 72, 821-852.
  • [32] Raftery, A., Karny, M. and Ettler, P. (2010). "Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill", Technometrics, 52, 52-66.
  • [33] Sala- i-Martin, X., Doppelhofer, G. and Miller, R. (2004). "Determinants of long-term growth: A Bayesian averaging of classical estimates (BACE) approach", American Economic Review, 94, 813-835.
  • [34] Sims, C. (1980). "Macroeconomics and reality", Econometrica, 48, 1-48.
  • [35] Sims, C. and Zha, T. (2006). "Were there regime switches in macroeconomic policy?" American Economic Review, 96, 54-81.
  • [36] Stock J. and Watson, M. (2002a). "Forecasting using principal components from a large number of predictors", Journal of the American Statistical Association, 97, 1167-1179.
  • [37] Stock J. and Watson, M. (2002b). "Macroeconomic forecasting using diffusion indexes", Journal of Business and Economics Statistics, 20, 147-162.
  • [38] Stock, J. and Watson, M. (2008). "Forecasting in dynamic factor models subject to structural instability", [in:] The Methodology and Practice of Econometrics, A Festschrift in Honour of Professor David F. Hendry, edited by J. Castle and N. Shephard, Oxford: Oxford University Press.
  • [39] West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models (second edition). New York: Springer
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.