Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 3 | nr 4 | 237--259
Tytuł artykułu

Forecasting Yield Curves in an Adaptive Framework

Treść / Zawartość
Warianty tytułu
Języki publikacji
Forecasting yield curves with regime switches is important in academia and financial industry. As the number of interest rate maturities increases, it poses difficulties in estimating parameters due to the curse of dimensionality. To deal with such a feature, factor models have been developed. However, the existing approaches are restrictive and largely based on the stationarity assumption of the factors. This inaccuracy creates non-ignorable financial risks, especially when the market is volatile. In this paper, a new methodology is proposed to adaptively forecast yield curves. Specifically, functional principal component analysis (FPCA) is used to extract factors capable of representing the features of yield curves. The local AR(1) model with time-dependent parameters is used to forecast each factor. Simulation and empirical studies reveal the superiority of this method over its natural competitor, the dynamic Nelson-Siegel (DNS) model. For the yield curves of the U.S. and China, the adaptive method provides more accurate 6- and 12-month ahead forecasts. (original abstract)
Opis fizyczny
  • National University of Singapore
  • National University of Singapore
  • [1] Baillie R. T. and Morana C. (2009). Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach, Journal of Economics Dynamics and Control 33: 1577-1592.
  • [2] Bansal R. and Zhou H. (2002). Term structure of interest rates with regime shifts, Journal of Finance 57: 1997-2043.
  • [3] Benko M., Härdle W. and Kneip A. (2009). Common functional principal components, Annals of Statistics 37: 1-34.
  • [4] Borak S. and Weron R. (2008). A semiparametric factor model for electricity forward curve dynamics, The Journal of Energy Markets 1: 3.16.
  • [5] Chan K. C., Karolyi G. A., Longstaff, F. A. and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate, The Journal of Finance 47: 1209. 1227.
  • [6] Chen J. and Gupta A. (1997). Testing and locating variance changepoints with application to stock prices, Journal of the American Statistical Association 92: 739.747.
  • [7] Chen L. (1996). Stochastic mean and stochastic volatility: A three factor model of the term structure of interest rates and its application to the pricing of interest rate derivatives, Financial Markets, Institutions and Instruments 5: 1.88.
  • [8] Chen Y., Härdle W. and Pigorsch U. (2010). Localized realized volatility modelling, Journal of the American Statistical Association 105: 1376.1393.
  • [9] Chen Y. and Niu L. (2012). Adaptive dynamic nelson-siegel term structure model with applications. Manuscript.
  • [10] Čižek, P., Härdle, W. and Spokoiny, V. (2009). Statistical inference for time-inhomogeneous volatility models, Econometrics Journal 12: 248 . 271.
  • [11] Cochrane J. and Piazzesi M. (2005). Bond risk premia, American Economic Review 95: 138. 160.
  • [12] Cox J., Ingersoll J. and Ross S. (1985). A theory of the term structure of interest rates, Econometrica 53: 385.407.
  • [13] Dai Q., Singleton K. and Yang W. (2004). Predictability of bond risk premia and affine term structure models, Working paper, Stanford University.
  • [14] Diebold F. X. (1986). Comment on: "modeling the persistence of conditional variance", Econometric Reviews 5: 51.56.
  • [15] Diebold F. X. and Inoue A. (2001). Long memory and regime switching, Journal of Econometrics 105: 131-159.
  • [16] Diebold F. X. and Li C. (2006). Forecasting the term structure of government bond yields, Journal of Econometrics 130: 337-364.
  • [17] Duffie D. and Kan R. (1996). A yield-factor model of interest rates, Mathematical Finance 6: 379-406.
  • [18] Egorov A. V., Li H. and Ng D. (2011). A tale of two yield curves: Modeling the joint term structure of dollar and euro interest rates, Journal of Econometrics 162: 55-70.
  • [19] Engle R. F. and Granger C. W. J. (1987). Co-integration and error correction: representation, estimation, and testing, Econometrica 55: 251-276.
  • [20] Fama E. F. and Bliss R. R. (1987). The information in long-maturity forward rates, American Economic Review 77: 680-692.
  • [21] Fengler M., Härdle W. and Mammen E. (2007). A semiparametric factor model for implied volatility surface dynamics, Journal of Financial Econometrics 5: 189-218.
  • [22] Fernández-Rodriguez F. (2006). Interest rate term structure modeling using free-knot splines, Journal of Business 79: 3083-3099.
  • [23] Ferraty F. and Vieu P. (2006). Nonparametric Functional Data Analysis, Springer, New York.
  • [24] Giacomini E., Härdle W. and Krätschmer V. (2009). Dynamic semiparametric factor models in risk neutral density estimation, Advances in Statistical Analysis 93: 387-402.
  • [25] Granger C.W. J. and Hyung N. (2004). Occasional structural breaks and long memory with an application to the S&P500 absolute stock returns, Journal of Empirical Finance 11: 399- 421.
  • [26] Guidolin M. and Timmermann A. (2009). Forecasts of us short-term interest rates: A flexible forecast combination approach, Journal of Econometrics 150: 297-311.
  • [27] Hall A. D., Anderson H. M. and Granger C.W. J. (1992). A cointegration analysis of treasury bill yields, The Review of Economics and Statistics 74: 116-126.
  • [28] Hamilton J. D. and Susmel R. (1994). Autoregressive conditional heteroskedasticity and changes in regime, Journal of Econometrics 64: 307-333.
  • [29] Härdle W. K., Müller M., Sperlich S. and Werwatz A. (2004). Nonparametric and Semiparametric Models, Springer, New York.
  • [30] Härdle W. and Trück S. (2010). The dynamics of hourly electricity prices, Technical report, SFB 649 Discussion Paper 2010-013.
  • [31] Hull J. and White A. (1994). Numerical procedures for implementing term structure models ii: Two factor models, Journal of Derivatives 2: 37-48.
  • [32] Jarrow, R., Ruppert, D. and Yu, Y. (2004). Estimating the interest rate term structure of corporate debt with a semiparametric penalized spline model, Journal of the American Statistical Association 99: 57-66.
  • [33] Lamoureux C. G. and Lastrapes W. D. (1990). Persistence in variance, structural change and the GARCH model, Journal of Business & Economic Statistics 8: 225-234.
  • [34] Litterman R. and Scheinkman J. (1991). Common factors affecting bond returns, Journal of Fixed Income 1: 54-61.
  • [35] Liu C. and Maheu J. M. (2008). Are there structural breaks in realized volatility?, Journal of Financial Econometrics 6: 326-360.
  • [36] McCulloch J. H. (1971). Measuring the term structure of interest rates, Journal of Business 44: 19-31.
  • [37] McCulloch J. H. (1975). The tax adjusted yield curve, Journal of Finance 30: 811-829.
  • [38] Merton R. C. (1973). Theory of rational option pricing, Bell Journal of Economics and Management Science 4: 141-183.
  • [39] Mikosch T. and Stărică C. (2004a). Changes of structure in financial time series and the GARCH model, REVSTAT Statistical Journal 2: 41-73.
  • [40] Mikosch T. and Stărică C. (2004b). Non-stationarities in financial time series, the long range dependence and the IGARCH effects, Review of Economics and Statistics 86: 378-390.
  • [41] Müller H.-G. (2005). Functional modelling and classification of longitudinal data, Scandinavian Journal of Statistics 32: 223-240.
  • [42] Nelson C. and Siegel A. (1987). Parsimonious modeling of yield curve, Journal of Business 60: 473-489.
  • [43] Ramsay J. and Silverman B. (2002). Applied Functional Data Analysis: Methods and Case Studies, Springer, New York.
  • [44] Ramsay J. and Silverman B. (2005). Functional Data Analysis, 2 edn, Springer, New York.
  • [45] Schaefer S. M. (1973). On measuring the term structure of interest rates, discussion paper, London Business School.
  • [46] Schaefer S. M. and Schwartz E. (1984). A two factor model of the term structure: An approximate analytical solution, Journal of Financial and Quantitative Analysis 19: 413-424.
  • [47] Scharth M. and Medeiros M. C. (2009). Asymmetric effects and long memory in the volatility of dow jones stocks, International Journal of Forecasting 25: 304-327.
  • [48] Shea G. S. (1985). Interest rate term structure estimation with exponential splines: A note, Journal of Finance 40: 319-325.
  • [49] So M. K. P., Lam K. and Li W. K. (1998). A stochastic volatility model with markov switching, Journal of Business & Economic Statistics, 16: 244-253.
  • [50] Svensson L. (1995). Estimating forward interest rates with the extended Nelson & Siegel method, Penning- & Valutapolitik 3: 13-26.
  • [51] Vasicek O. (1977). An equilibrium characterization of the term structure, Journal of Financial Economics 5: 177-188.
  • [52] Vasicek O. A. and Fong H. G. (1982). Term structure modeling using exponential splines, Journal of Finance 37: 339-356.
  • [53] Vetzal K. R. (1994). A survey of stochastic continuous time models of the term structure of interest rates, Insurance: Mathematics and Economics 14: 139-161.
  • [54] Weron R. (2006). Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, Wiley. 23
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.