Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 4 | nr 2 | 95--116
Tytuł artykułu

On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process

Treść / Zawartość
Warianty tytułu
Języki publikacji
We discuss the empirical importance of long term cyclical effects in the volatility of financial returns. Following Amado and Terasvirta (2009), Cizek and Spokoiny (2009) and others, we consider a general conditionally heteroscedastic process with stationarity property distorted by a deterministic function that governs the possible time variability of the unconditional variance. The function proposed in this paper can be interpreted as a finite Fourier approximation of an Almost Periodic (AP) function as defined by Corduneanu (1989). The resulting model has a particular form of a GARCH process with time varying parameters, intensively discussed in the recent literature. In the empirical analyses we apply a generalisation of the Bayesian AR(1)-GARCH model for daily returns of S&P500, covering the period of sixty years of US postwar economy, including the recently observed global financial crisis. The results of a formal Bayesian model comparison clearly indicate the existence of significant long term cyclical patterns in volatility with a strongly supported periodic component corresponding to a 14 year cycle. Our main results are invariant with respect to the changes of the conditional distribution from Normal to Student-t and to the changes of the volatility equation from regular GARCH to the Asymmetric GARCH. (original abstract)
Opis fizyczny
  • Cracow University of Economics, Poland
  • Cracow University of Economics, Poland
  • [1] Amado C., Terasvirta T. (2009) Modelling Conditional and Unconditional Heteroscedasticity with Smoothly Time Varying Structure, SSE/EFI Working Paper Series in Economics and Finance 691, Stockholm School of Economics
  • [2] Amado C., Terasvirta T. (2012) Modelling Changes in the Unconditional Variance of Long Stock Return Series, CREATES Research Paper 2012-07, University of Aarhus
  • [3] Amendola A., Niglio M. (2004) Predictor distribution and forecast accuracy of threshold models, Statistical Methods and Applications 13, 3-14
  • [4] Baillie R.T., Morana C. (2009) Modelling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach, Journal of Economic Dynamics and Control 33, 1577-1592
  • [5] Bauwens L., Lubrano M., Richard J-F. (1999) Bayesian Inference in Dynamic Econometric Models, Oxford University Press, Oxford.
  • [6] Berkes I., Gombay E., Horvath L., Kokoszka P. (2004) Sequential Change-point Detection in GARCH(p.q) Models, Econometric Theory 20, 1140-1167
  • [7] Bloomfield P., Hurd H., Lund R., (1994) Periodic Correlation in Stratospheric Ozone Time Series Journal of Time Series Analysis 15, 127-150.
  • [8] Bollerslev T. (1986) Generalised Autoregressive Conditional Heteroscedasticity, Journal of Econometrics 31, 307-327.
  • [9] Cai Z., Fan J., Li R. (2000) Efficient Estimation and Inferences for Varying-Coefficient Models, Journal of the American Statistical Association 95, 888-902.
  • [10] Changli H (1997) Statistical Properties of GARCH Processes, PHD Dissertation, Stockholm School of Economics, Stockholm
  • [11] Changli H., Terasvirta T. (1999) Properties of Moments of a Family of GARCH Processes, Journal of Econometrics 92, 173-192
  • [12] Chauvet M., Potter S. (2001) Recent Changes in the U.S. Business Cycle, Staff Reports 126, Federal Reserve Bank of New York.
  • [13] Cizek P., Spokoiny V. (2009) Varying Coefficient GARCH Models. In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 168-185, Springer, New York.
  • [14] Clark P.K. (1973) A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica 41, 135-155
  • [15] Corduneanu C. (1989) Almost Periodic Functions, Chelsea, New York
  • [16] Engle R.F. (1982) Autoregressive Conditionall Heteroskedasticity with Estimates of the Variance of the United Kingdom Inflation, Econometrica 50, 978-1007
  • [17] Engle R.F. (ed.) (1995) ARCH, Selected Readings, Oxford University Press, Oxford
  • [18] Engle R.F., Mustafa C. (1992) Implied ARCH Models from Option Prices, Journal of Econometrics 52, 289-311
  • [19] Fan J., Zhang W. (1999) Additive and Varying Coefficient Models - Statistical Estimation in Varying Coefficient Models, The Annals of Statistics 27, 1491-1518
  • [20] Fan J., Yao Q., Cai Z. (2003) Adaptive Varying-Coefficient Linear Models, Journal of the Royal Statistical Society B 65, 57-80
  • [21] Gallant A.R. (1981) On the Bias in Flexible Functional Forms and an Essentially Unbiased Form: the Fourier Flexible Form, Journal of Econometrics 15, 211-245
  • [22] Gardner W.A.(1986) Measurement of Spectral Correlation, Signal Processing 34, 1111-1123.
  • [23] Gardner W.A., Napolitano A., Paura L. (2006) Cyclostationarity: Half a Century of Research, Signal Processing, 639-697
  • [24] Glosten L., Jagannathan R., Runkle D. (1993), On the Relation between Expected Value and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance 48, 1779-1801
  • [25] Gourieroux C. (1997) ARCH Models and Financial Applications, Springer Verlag, Nowy York
  • [26] Haas M., Mittnik S., Paolella M. (2004), Mixed Normal Conditional Heteroskedasticity Journal of Financial Econometrics 2, 211-250
  • [27] Hall P., Yao Q. (2003) Inference in ARCH and GARCH Models with Heavy Tailed Errors Econometrica 71, 285-317
  • [28] Hamilton J. (1989) A new Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, Econometrica 57, 357-384
  • [29] Hamilton J.D., Susmel R. (1994) Autoregressive Conditional Heteroskedasticity and Changes in Regime, Journal of Econometrics 64, 307-333
  • [30] Härdle W., Herwatz H., Spokoiny V. (2003) Time Inhomogeneous Multiple Volatility Modelling, Journal of Financial Econometrics 1, 55-99.
  • [31] Hurd H.L., Miamee A.G. (2007) Periodically Correlated Random Sequences: Spectral Theory and Practice, John Wiley, New Jersey
  • [32] Kwiatkowski L. (2010) Markov Switching In-Mean Effect. Bayesian Analysis in Stochastic Volatility Framework, Central European Journal of Economic Modelling and Econometrics 2, 59-94
  • [33] Lamoreux C.G., Lastrapes W.D. (1990) Persistence in Variance, Structural Change and the GARCH Model, Journal of Business and Economic Statistics 8, 225-234
  • [34] Lange T., Rahbek A. (2009) Varying Coefficient GARCH Models, In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 168-185. Springer, New York.
  • [35] Lenart L. (2013), Non-parametric Frequency Identification and Estimation in Mean Function for Almost Periodically Correlated Time Series, Journal of Multivariate Analysis 115, 252-269
  • [36] Li M., Lin H. (2004) Estimating Value-at-Risk via Markov switching ARCH models - an empirical study on stock index returns, Applied Economics Letters 11, 679-691
  • [37] Lumsdaine R.L. (1995) Finite-Sample Properties of the Maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1,1) Models: a Monte Carlo Investigation, Journal of Business and Economic Statistics 13, 1-10
  • [38] Mercurio D., Spokoiny V. (2004) Statistical Inference for Time- Inhomogeneous Volatility Models, The Annals of Statistics 32, 577-602.
  • [39] Mikosch T., Starica C. (2004) Non-stationarities in Financial Time Series, the Long Range Dependence and the IGARCH Effects, The Review of Economics and Statistics 86 378-390
  • [40] Napolitano A., Spooner C.M. (2001) Cyclic Spectral Analysis of Continuous-Phase Modulated Signals, IEEE Trans. Signal Process. 49, 30-44
  • [41] Newton M.A., Raftery A.E. (1994) Approximate Bayesian Inference by the Weighted Likelihood Bootstrap (with Discussion), Journal of the Royal Statistical Society B 56, 3-48
  • [42] Osiewalski J., Steel M.F.J. (1993) A Bayesian Perspective on Model Selection, manuscript published in Spanish as Una perspectiva bayesiana en selección de modelos, Cuadernos Economicos 55/3, 327-351.
  • [43] Osiewalski J., Pipień M. (2004) Bayesian Comparison of Bivariate ARCH-Type Models for the Main Exchange Rates in Poland, Journal of Econometrics 123, 371-391
  • [44] Osiewalski J., Pipień M., (2003) Bayesian Analysis and Option Pricing in Univariate GARCH Models with Asymmetries and GARCH-In-Mean Effects, Przegląd Statystyczny - Statistical Review 50, 5-29
  • [45] Spokoiny V., Chen Y., (2007) Multiscale Local Change-point Detection with applications to Value-at-Risk, The Annals of Statistics 37, 1405-1436.
  • [46] Susmel R. (2000) Switching Volatility in Private International Equity Markets, International Journal of Finance and Economics 5, 265-283
  • [47] Terasvirta T. (2009) An Introduction to Univariate GARCH Models, In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (Eds.): Handbook of Financial Time Series, 17-42 Springer, New York.
  • [48] Weiss A.A. (1993) ARMA Models with ARCH Errors Journal of Time Series Analysis 5, 129-143
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.