PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 12 | 35--52
Tytuł artykułu

Does It Take Volume to Move the EUR/PLN FX Rates? Evidence from Quantile Regressions

Treść / Zawartość
Warianty tytułu
Czy wolumen transakcji wpływa na zmiany kursu EUR/PLN? Wnioski płynące z zastosowania regresji kwantylowych
Języki publikacji
EN
Abstrakty
W artykule dokonano badania wpływu wolumenu transakcyjnego na wartość wybranych kwantyli rozkładu stóp zwrotu z kursu EUR/PLN. Wyniki empiryczne otrzymane na podstawie regresji kwantylowych potwierdziły, że wzrost obrotów ma statystycznie istotny wpływ na dyspersję rozkładu stóp zwrotu. W badaniu dokonano podziału wolumenu transakcyjnego na dwie części: tzw. wolumen oczekiwany przez uczestników rynku i tzw. wolumen nieoczekiwany przez uczestników rynku oraz wykazano, że to wolumen nieoczekiwany ma dużo większy wpływ na dyspersję badanego rozkładu. Zaobserwowano również, że relacja pomiędzy wolumenem a stopą zwrotu ma charakter nieliniowy, tzn. jest najsilniejsza dla najbardziej ekstremalnych kwantyli. Wykazano, że w konsekwencji uwzględnienia miary warunkowej zmienności (jako dodatkowego czynnika wyjaśniającego dynamikę kwantyli stóp zwrotu) wpływ oczekiwanej wartości wolumenu transakcyjnego ulega zmniejszeniu, ale wciąż pozostaje istotny statystycznie, szczególnie dla najbardziej ekstremalnych kwantyli. (abstrakt oryginalny)
EN
This study investigates the impact of trading volume on selected quantiles of the EUR/PLN return distribution. Empirical results obtained with the quantile regression approach confirm that an increase in the turnover is associated with a significant increase in the dispersion of the corresponding return distribution. We divided the trading volume into its expected (antici-pated) and unexpected (unanticipated) component and found that the unexpected volume shocks have a significantly larger impact on the dispersion of the return distribution. We also observed that the volume-return relationship is nonlinear; the dependence is stronger with more extreme quantiles. Moreover, after accounting for a conditional volatility measure as a controlling explan-atory factor for the quantile dynamics, the impact of the expected volume declines yet remains significant especially for the most extreme quantiles. (original abstract)
Rocznik
Tom
12
Strony
35--52
Opis fizyczny
Twórcy
  • Warsaw School of Economics, Poland
Bibliografia
  • Admati, A., Pfleiderer, P. (1988), A Theory of Intraday Patterns: Volume and Price Variability, Review of Financial Studies, 1, 3-40.
  • Andersen, T. (1996), Return Volatility and Trading Volume: an Information Flow Interpretation of Stochastic Volatility, Journal of Finance, 51, 169-204.
  • Andersen, T., Bollerslev, T. (1996), Intraday Periodicity and Volatility Persistence in Financial markets, Journal of Empirical Finance, 4, 115-158.
  • Baur, D.G., Dimpfl T., Jung, R.C. (2011), Stock Return Autocorrelations Revisited: A Quantile Regression Approach, Journal of Empirical Finance, 19, 251-265.
  • Bauwens, L., Veredas, D. (2004), The Stochastic Conditional Duration Model: A Latent Variable Model for the Analysis of Financial Durations, Journal of Econometrics, 119, 381-412.
  • Bessembinder, H., Seguin, P.J. (1994), Price Volatility, Trading Volume and Market Depth: Evidence from Futures Markets, Journal of Financial and Quantitative Analysis, 28, 21-39.
  • Bień, K. (2006), Advanced ACD Models - Presentation and the Example of Application, Statisti-cal Review, 53 (1), 90-108.
  • Blume, L., Easley, D., O'Hara (1994), Market Statistics and Technical Analysis: The Role of Volume, Journal of Finance, 49, 153-181.
  • Bjonnes, G.H., Rime, D., Solheim, H.O. (2003), Volume and Volatility in the FX Market: Does it Matter Who You Are?, CESifo Working Paper No. 783.
  • Bohl, M., T., Henke, H. (2003), Trading Volume and Stock Market Activity: the Polish Case, International Review of Financial Analysis, 12, 513-525.
  • Brown-Hruska, S., Kuserk, G. (1995), Volatility, Volume and the Notion of Balance in the S&P500 Cash and Futures Markets, Journal of Futures Markets, 15(6), 677-689.
  • Chuang, C-C., Kuan C-M., Lin, H-Y. (2009), Causality in Quantiles and Dynamic Stock Return-Volume Relationships, Journal of Banking and Finance, 33, 1351-1360.
  • Copeland, T.E. (1976), A Model of Asset Trading under Assumption of Sequential Information Arrival", Journal of Finance, 31, 1149-1168.
  • Crouch, R.L. (1970), The Volume of Transactions and Price Changes on the New York Stock Exchange, Financial Analysts Journal, 26, 104-109.
  • Clark, P. (1973), A subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica, 41, 135-155.
  • Darrat, A.F., Rahman S., Zhong M. (2007), Intraday Trading Volume and Return Volatility of the DJIA Stocks: a Note, Journal of Banking and Finance, 31(9), 2711-2729.
  • Deo, M., Srinivasan K., Devanadhen, K. (2008), The Empirical Relationship between Stock Returns, Trading Volume and Volatility: Evidence from Select Asia-Pacific Stock Market, European Journal of Economics, Finance and Administrative Sciences, 12, 58-68.
  • Diebold, F.X., Gunther, T.A., Tay, A.S. (1998), Evaluating Density Forecasts with Applications to Financial Risk Management, International Economic Review, 39, 863-883.
  • Doman, M. (2008), Information Impact on Stock Price Dynamics, Dynamic Econometric Models, 8, 13-20.
  • Doman, M. (2011), Mikrostruktura giełd papierów wartościowych, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
  • Engle, R.F., Manganelli, S. (2004), CAViaR: Conditional Autoregressive Value at Risk by Re-gression Quantiles, Journal of Business & Economic Statistics, 22(4), 367-381.
  • Engle, R.F., Russell, J.R. (1998), Autoregressive Conditional Duration; a New Approach for Irregularly Spaced Transaction Data, Econometrica, 66, 1127-1162.
  • Easley, D., Kiefer, N., O'Hara M. (1997), One Day in the Life of a Very Common Stock, Review of Financial Studies, 10, 805-835.
  • Easley, D., O'Hara M. (1987), Price, Trade Size and Information in Securities Markets, Journal of Financial Economics, 19, 69-90.
  • Easley, D., O'Hara M. (1992), Time and the Process of Security Price Adjustment, Journal of Finance, 47, 576-605.
  • Epps, T.W., Epps, M.L., (1976), The Stochastic Dependence of Security Price Changes an Trans-action Volumes: Implications for the Mixture of Distribution Hypothesis, Econometrica, 44, 305-321.
  • Fleming, J., Kirby, C., Ostdiek, B. (2006), Stochastic Volatility, Trading, Volume, and the Flow of Information, Journal of Business, 79(3), p. 1551-1590.
  • Gallant, A.R., Rossi, P.E., Tauchen, G. (1992), Stock Prices and Volume, The Review of Finan-cial Studies, 5, 199-242.
  • Giot, P. (2000), Time Transformations, Intraday Data and Volatility Models, Journal of Computa-tional Finance, 4(2), 31-62.
  • Giot, P. (2005), Market Risk Models for Intraday Data, European Journal of Finance, 11, 309-324.
  • Grammig, J., Maurer, K. (2000), Non-monotonic Hazard Functions and the Autoregressive Con-ditional Duration Model, Econometrics Journal, 3, 16-38.
  • Gurgul, H., Majdosz, P., Mestel, R. (2005), Joint Dynamics of Prices and Trading Volume on the Polish Stock Market, Managing Global Transitions, 3(2), 139-156.
  • Hartmann, P. (1999), Trading Volumes and Transaction Costs in the Foreign Exchange Market. Evidence from Daily Dollar-Yen Spot Data, Journal of Banking and Finance, 23, 801-824.
  • Hendricks, W., Koenker, R. (1991), Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity, Journal of the American Statistical Association, 87, 58-68.
  • Huber, P. (1967), Behavior of Maximum Likelihood Estimates under Nonstandard Conditions, in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press.
  • Huang, C-M., Lin, T-Y., Yu, C-H., Hoe, S-Y. (2006), Volatility-Volume Relationships among Types of Traders considering Investment Limitation to Foreign Investors, Review of Pa-cific Basin Financial Markets and Policies, 9(4), p. 575-596.
  • Jennings, R.H., Starks, L.T., Fellingham, J.C. (1981), An Equilibrium Model of Asset Trading with Sequential Information Arrival, Journal of Finance, 36, 143-161.
  • Jones, C.M., Kaul, G., Lipson, M.L. (1994), Transactions, Volume, and Volatility, The Review of Financial Studies, 7(4), 631-651.
  • Karpoff, J.M. (1987), What Drives the Volume-Volatility Relationship on Euronext Paris?, The Journal of Financial and Quantitative Analysis, 22(1), 109-126.
  • Koenker, R. (2005), Quantile Regressions, Cambridge University Press, New York.
  • Luckley, B.M. (2005), Does Volume Provide Information? Evidence from the Irish Stock Market, Applied Financial Economic Letters, 1, 105-109.
  • Lamoureux, C., Lastrapes, W. (1990), Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects, Journal of Finance, 45, 220-229.
  • Louhichi, W. (2011), The Relation between Price Changes and Trading Volume: a Survey, Inter-national Review of Financial Analysis, 200-206.
  • Malinova, K., Park, A. (2011), Trading Volume in Dealer Markets, Journal of Financial and Quantitative Analysis, 45, 1447-1489.
  • Majand, M., Young, K. (2006), A GARCH Examination of the Relationship between Volume and Price Variability, Journal of Futures Markets, 11(5), 613-621.
  • Manganelli, S. (2005), Duration, Volume and Volatility Impact of Trades, Journal of Financial Markets, 8, 377-399.
  • Morgan, I. G. (1976), Stock Prices and Heteroskedasticity, Journal of Business, 49, 496-508.
  • Nolte, I. (2008), Modeling a Multivariate Trading Process, Journal of Financial Econometrics, 6, 143-170.
  • Tauchen, G., Pitts, M. (1983), The Price Variability-Volume Relationship on Speculative Mar-kets, Econometrica, 51, 485-505.
  • Taylor, J.W. (1999), A Quantile Regression Approach to Estimating the Distribution of Multipe-riod Returns, Journal of Derivatives, 7, 64-78.
  • Westerfield, R. (1977), The Distribution of Common Stock Price Changes: An Application of Trans? actions Time and Subordinated Stochastic Models, Journal of Financial and Quan-titative Analysis, 12, 743-765.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171232335

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.