PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 11 | 171--184
Tytuł artykułu

Jumps Activity and Singularity Spectra for Instruments in the Polish Financial Market

Autorzy
Treść / Zawartość
Warianty tytułu
Aktywność skoków i spectrum osobliwości dla instrumentów z polskiego rynku finansowego
Języki publikacji
EN
Abstrakty
W artykule podejmujemy próbę oszacowania aktywności skoków w procesach cen kilku instrumentów z polskiego rynku finansowego. Jako miarę aktywności skoków przyjmujemy indeks β Blumenthala-Getoora dla procesów Lévy'ego. Pozwala nam to na rozróżnienie procesów charakteryzujących się rzadkimi i dużymi skokami i procesów o nieskończonej aktywności procesu skoków. Aktywność skoków szacujemy trzema różnymi metodami. Wykorzystujemy wykresy podpisu aktywności (activity signature plots) do zbadania typu procesu. Następnie korzystamy z estymatora Aït-Sahalii i Jacod, opartego na liczbie przekroczeń, do oszacowania wartości indeksu β. Wreszcie korzystamy ze spektrum ciągłości oraz z odpowiednich twierdzeń na temat przebiegu tej funkcji dla procesów Lévy'ego z różnymi wartościami indeksu β. (abstrakt oryginalny)
EN
In the paper we try to measure the activity of jumps in returns of some instruments from the Polish financial market. We use Blumenthal-Getoor index β for Lévy processes as a measure of jumps' activity. This allows us to distinguish between processes with rare and sharp jumps and the processes with infinitely-active jump component. We use three different methods. First we use activity signature plots to estimate the activity patterns of jumps. Then we estimate the Blumenthal-Getoor index with Aït-Sahalia and Jacod threshold estimator.Then we use methods based on singularity spectra of Lévy processes. Finally, we compare the results. (original abstract)
Rocznik
Tom
11
Strony
171--184
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
Bibliografia
  • Aït-Sahalia, Y., Jacod, J. (2009), Estimating The Degree of Activity of Jumps in High Frequency Data, The Annals of Statistics 37, 2202-2244.
  • Barndorff-Nielsen, O.E., Shephard, N. (2002), Power Variation and Time Change, working paper, available in RePEc database.
  • Becry, E., Muzy, J. F., Arnédo, A. (1993), Singularity Spectrum of Fractal Signals from Wavelet Analysis: Exact Results, Journal of Statistical Physics 70, 635-674.
  • Black, F., Scholes, M. (1973), The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637-654.
  • Cont, R. (2001), Empirical Properties of Assets Returns: Stylized Facts and Statistical Issues, Qualitative Finance 1, 223-236.
  • Cont, R., Tankov, P. (2004), Financial Modelling with Jump Processes, Chapman&Hall, London, New York.
  • Falconer, K. (2003) Fractal Geometry, Wiley.
  • Feller, W. (1971), An Introduction to Probability Theory and Its Applications, vol. 2, Wiley.
  • Frisch, U., Parsi, G. (1985) Fully Developed Turbulence and Intermittency, in: Giil, M. (ed.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North Holland, Amsterdam, 84-88.
  • Jaffard, S. (1997a), Multifractal Formalism for Functions Part I: Results Valid for All Functions, SIAM Journal of Mathematical Analysis 28, 944-970.
  • Jaffard, S. (1997b), Multifractal Formalism for Functions Part II: Self-Similar Functions, SIAM Journal of Mathematical Analysis 28, 971-998.
  • Jaffard, S. (1999), The Multifractal Nature of Lévy Processes, Probability Theory and Related Fields 114, 207-227
  • Jondeau, E., Poon, S.-H., Rockinger, M. (2007), Financial Modeling Under Non-Gaussian Distributions, Springer.
  • Kallsen, J. (2000), Optimal Portfolios for Exponential Lévy Processes, Mathematical Methods of Operational Research 51, 357-374.
  • Maldenbrot, B. B. (1963) The Variation of Certain Speculative Prices, Journal of Business 36, 394-419.
  • Malevergne, Y., Sornette, D. (2006), Extreme Financial Risks, Springer, Berlin, New York.
  • Mallat, S. (2003), A Wavelet Tour of Signal Processing, Elsevier, Singapore.
  • Markowitz, H.M (1952) Portfolio Selection, Journal of Finance 7, 77-91.
  • Merton, R. C. (1973) Theory of Rational Option Pricing, Bell Journal of Economics and Management Science 4, 141-183.
  • Oświęcimek, P. (2005), Multifraktalne charakterystyki finansowych szeregów czasowych (Multifractal Characteristics of Financial Time Series), doctor thesis, Instytut Fizyki Jądrowej Polskiej Akademii Nauk (Nuclear Physics Institute of The Polish Academy of Science).
  • Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton.
  • Sharpe, W. F. (1963), A Simplified Model for Portfolio Analysis, Management Science 9, 277-293.
  • Todorov, V., Tauchen, G. (2009), Activity Signature Function for High-Frequency Data Analysis, Journal of Econometrics, preprint at http://ideas.repec.org (7.09.2011).
  • Turiel, A., Pérez-Vincente, C., Grazzini, J. (2006), Numerical Methods for The Estimation of Multifractal Singularity Spectra on Sampled Data: A Comparative Study, Journal of Computational Physics 216, 362-390.
  • Zhang, L., Mykland, P. A., Aït-Sahalia Y. (2005), A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High-Frequency Data, Journal of the American Statistical Association 100, 1394-1411.
  • Zhang, L. (2007), What You Don't Know Cannot Hurt You: On the Detection of Small Jumps, working paper at http://tigger.uic.edu/~lanzhang/ (7.09.2011).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171232655

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.