Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 5 | nr 1 | 65--83
Tytuł artykułu

A Long-Run Relationship between Daily Prices on Two Markets: The Bayesian VAR(2)-MSF-SBEKK Model

Treść / Zawartość
Warianty tytułu
Języki publikacji
We develop a fully Bayesian framework for analysis and comparison of two competing approaches to modelling daily prices on different markets. The first approach, prevailing in financial econometrics, amounts to assuming that logarithms of prices behave like a multivariate random walk; this approach describes logarithmic returns most often by the VAR(1) model with MGARCH (or sometimes MSV) disturbances. In the second approach, considered here, it is assumed that daily price levels are linked together and, thus, the error correction term is added to the usual VAR(1)-MGARCH or VAR(1)-MSV model for logarithmic returns, leading to a reduced rank VAR(2) specification for logarithms of prices. The model proposed in the paper uses a hybrid MSVMGARCH structure for VAR(2) disturbances. In order to keep cointegration modelling as simple as possible, we restrict to the case of two prices representing two different markets. The aim of the paper is to show how to check if a long-run relationship between daily prices exists and whether taking it into account influences our inference on volatility and short-run relations between returns on different markets. In the empirical example the daily values of the S&P500 index and the WTI oil price in the period 19.12.2005 - 30.09.2011 are jointly modelled. It is shown that, although the logarithms of the values of S&P500 and WTI oil price seem to be cointegrated, neglecting the error correction term leads to practically the same conclusions on volatility and conditional correlation as keeping it in the model. (original abstract)
Opis fizyczny
  • Cracow University of Economics, Poland
  • [1] Bekiros S. and Diks C. (2008), The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality, Energy Economics 30, 2673-2685.
  • [2] Chang C., Lai J. and Chuang I. (2010), Futures hedging effectiveness under the segmentation of bear/bull energy markets, Energy Economics 32, 442-449.
  • [3] Ji Q. and Fan Y. (2011), A dynamic hedging approach for refineries in multiproduct oil markets, Energy 36, 881-887.
  • [4] Koop G., León-Gonzalez R. and Strachan R. (2009), Efficient posterior simulation for cointegrated models with priors on the cointegration space, Econometric Reviews 29, 224-242.
  • [5] Lenk P. (2009), Simulation pseudo-bias correction to the harmonic mean estimator of integrated likelihoods, Journal of Computational and Graphical Statistics 18, 941-960.
  • [6] Mahadevan R. and Suardi S. (2011), The effects of uncertainty dynamics on exports, imports and productivity growth, Journal of Asian Economics 22, 174- 188.
  • [7] Newton M. and Raftery A. (1994), Approximate Bayesian inference by Weighted Likelihood Bootstrap (with discussion), Journal of the Royal Statistical Society, series B 56, 3-48.
  • [8] Osiewalski J. (2009), New hybrid models of multivariate volatility (a Bayesian perspective). Przegląd Statystyczny (Statistical Review), 56(1), 15-22.
  • [9] Osiewalski J. and Pajor A. (2009), Bayesian analysis for hybrid MSF- SBEKK models of multivariate volatility. Central European Journal of Economic Modelling and Econometrics 1, 179-202.
  • [10] Osiewalski J. and Pipień M. (2004), Bayesian comparison of bivariate GARCH processes. The role of the conditional mean specification. Chapter 7 in: New Directions in Macromodelling (ed. by A.Welfe), Elsevier, Amsterdam, pp.173- 196.
  • [11] Osiewalski K. and Osiewalski J. (2012), Missing observations in daily returns - Bayesian inference within the MSF-SBEKK model. Central European Journal of Economic Modelling and Econometrics 4, 169-197.
  • [12] Pajor A. (2003), Procesy zmienności stochastycznej w bayesowskiej analizie finansowych szeregów czasowych (Stochastic Variance Processes in Bayesian analysis of Financial Time Series), Monografie: Prace Doktorskie Nr 2, Wydawnictwo Akademii Ekonomicznej w Krakowie, Kraków.
  • [13] Pajor A. (2011), A Bayesian analysis of exogeneity in models with latent variables. Central European Journal of Economic Modelling and Econometrics 4, 49-73.
  • [14] Strachan R. (2003), Valid Bayesian estimation of the cointegrating error correction model, Journal of Business & Economic Statistics, vol. 21, p. 185- 195.
  • [15] U.S. Energy Information Administration, Annual Energy Outlook 2013 - Early Release Overview. Available at 0383er%282013%29.pdf
  • [16] Wróblewska J. (2010), Modele i metody bayesowskiej analizy kointegracji (Models and methods of Bayesian cointegration analysis), Wydawnictwo Uniwersytetu Ekonomicznego w Krakowie (Cracow University of Economics Press), Kraków.
  • [17] Yu B. and Mykland P. (1998), Looking at Markov samplers through cusum path plots: a simple diagnostic idea, Statistics and Computing 8, 275-286.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.