PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | nr 74 | 377--393
Tytuł artykułu

Application of Neural Networks in Economic Forecasting

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The complexity of economic processes is reflected in the time series which register their state. Not all the aspects of the economic process can be registered. In order to obtain the useful information from statistical data, it is necessary to apply many labor-consuming and sophisticated procedures. Economic conditions are represented by objective processes, such as industrial production, product prices, export and import, employment and unemployment, job vacancies, etc. on the one hand, and behavioural modes of businessmen and consumers, their assessments and expectations as regards prices, sales, employment, and other economic indexes on the other hand. So we are dealing with objective facts (quantitative data) and subjective facts (qualitative data). Moreover, the analysed processes are all interdependent. Such a situation requires extreme methodological flexibility - a sort of methodological eclecticism. In view of the multidimensional object, the use of merely one method may yield a distorted image. That is why several different methods have been used in this study: the naive no-change method, simple linear regression, auto-regressive (integrated) moving-average model (ARMA and ARIMA), and artificial neuronal networks. (fragment of text)
Rocznik
Numer
Strony
377--393
Opis fizyczny
Twórcy
  • Poznań University of Economics, Poland
  • Poznań University of Economics, Poland
Bibliografia
  • Aczel A.D., 1997. Statystyka w zarządzaniu. (Managerial statistics). Warszawa.
  • Bierens H.J., 1997. Testing the Unit Root Hypothesis Against Nonlinear Trend Stationarity, With an Application to the Price Level and Interest Rate in the U.S. "Journal of Econometrics" 81, 29-64.
  • Bierens H.J., 1999. Unit Root. [in:] Badi Baltagi (ed.), Companion in Theoretical Econometrics, Blackwell Publishers.
  • Bierens H.J., 2001. Complex Unit Roots and Business Cycles: Are They Real?, "Econometric Theory" 17, 962-983.
  • Bierens H.J., 2001. EasyReg International. Department of Economics, Pennsylvania State University, University Park, PA.
  • Bierens H.J., 2002. Forecasting, http://econ.la.psu.edu/~hbierens/forecast.pdf.
  • Charemza W.W., Deadman D.F., 1997. Nowa ekonometria. (New econometrics). Warszawa.
  • Chow G.C., 1995. Ekonometria. (Econometrics). Warszawa.
  • Cieślak M. 2001. Prognozowanie gospodarcze, metody i zastosowanie. (Economic forecasting: methods and applications). Warszawa.
  • Dąbkowski J., 2000. O problemie redukcji wymiarów. (On the problem of dimensions deduction). Kraków.
  • Dickey D.A., Fuller W.A., 1979. Distributions of the Estimators for Autoregressive Time Series with a Unit Root. "Journal of the American Statistical Assotiation" 74, 427-431.
  • Dittmann P., 2000. Metody prognozowania sprzedaży w przedsiębiorstwie. (Methods of sales forecasting in an enterprise). Wrocław.
  • Gajda J.B., 2001 .Prognozowanie i symulacja a decyzje gospodarcze. (Forecasting, simulation and economic decisions). Warszawa.
  • Gruszczyński M., Podgórska M., 1996. Ekonometria. (Econometrics). Warszawa.
  • Gujarati D. N., 1995. Basic Econometrics. International Edition.
  • Kobus P., Pietrzykowski R., Zieliński W., 2001. Statystyka z pakietem Statistica. (Statistics with Statistica software). Warszawa.
  • Kolenda K., Kolenda M., Hellwig Z., 1999. Prognozy. (Forecasts). Wrocław.
  • MacKinnon J.G., 1991. Critical Values for Cointegration Tests. [in:] R.F. Englc, C.W.J. Granger (eds.), Long-run Economic Relationships, Oxford.
  • Lula P., 1999. Jednokierunkowe sieci neuronowe w modelowaniu zjawisk ekonomicznych. (One-Way neural networks in modelling of economic processess). Kraków.
  • Luszniewicz A., Słaby T., 2001. Statystyka z pakietem komputerowym Statistica PL. (Statistics with computer programme Statistica). Warszawa.
  • Ostasiewicz W. 1999. Statystyczne metody analizy danych. (Statistical methods of data analysis). Wrocław.
  • Rutkowska D., Piliński M., Rutkowski L., 1999. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. (Neural networks, genetic algorithms, and disguised systems). Warszawa - Łódź.
  • Sherman H.J., Kolk D.X., 1996. Business Cycles and Forecasting. New York.
  • StatSoft, Inc. 2000. STATISTICA for Windows. (Computer program manual). Tulsa, OK: StatSoft, Inc.
  • StatSoft, Inc. 2000. STATISTICA Neural Networks Pl 4.0 F (Computer program manual). Tulsa, OK: StatSoft, Inc.
  • Talaga L., Zieliński Z., 1986. Analiza spektralna w modelowaniu ekonometrycznym. (Spectral analysis in econometric modelling). Warszawa.
  • Welfe A., 1995. Ekonometria. (Econometrics). Warszawa.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171237335

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.