PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | nr 79 | 7--22
Tytuł artykułu

Using Business Tendency Surveys for Short-term Forecasting of Macro-categories : an Econometric Approach

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem stated in this paper is whether the incorporation of qualitative data into the econometric model improves short-term forecasts. The key assumption is that qualitative data reflects rational expectations, hence it broadens the category of a business entity to a substantial extent. Microeconomic decisions, which automatically absorb any events, decisions, and other phenomena in the economic environment, are expressed in time series derived from business survey data. Therefore, we can assume that business survey data combined with econometric instruments will have a certain added value, particularly if selected quantitative and qualitative variables are merged. This should make macroeconomic diagnosis and forecasting both quicker and better. The purpose of the empirical research is the evaluation of the predictive capabilities of the qualitative business survey data. The data set comprises time series of 15 variables from monthly business surveys and 21 time series of macroeconomic indicators published by the Central Statistical Office for the period 1995Q1 to 2005Q4. The applied econometric procedures shed light on the significant causal relations between qualitative and quantitative variables. Presented economic procedure is an essential preliminary condition for improvement of efficiency for forecasting of the main macroeconomic variables. (original abstract)
Bibliografia
  • Blangiewicz M., Strzała K., (2006), Podobieństwa i różnice struktury stochastycznej mikro- i makroekonomicznych wskaźników koniunktury gospodarczej Polski, Prace i Materiały Wydziału Zarządzania Uniwersytetu Gdańskiego, No. 2, 2006 (in print).
  • Cheung Y.W., Lai K.S., (1995), Lag Order and Critical Values of the Augmented Dickey-Fuller Test, Journal Business & Economic Statistics, Vol. 13, pp. 277-280.
  • Cook S., Manning N., (2004), Lag optimisation and finite-sample size distortion of unit root tests, Economics Letters Vol. 84, pp. 267-274.
  • Charemza W.W., Deadman D.F., (1992), New Directions in Econometric Practice, Edward Elgar, Aldershot.
  • da Silva Lopes А.С.В., (2003), The order of integration for quarterly macroeconomic time-series: A simple testing strategy, Empirical Economics, Vol. 28, pp. 783-794.
  • Dickey D.A., Fuller W.A., (1981), Likelihood Ratio Statistics for Auto-regressive Time Series with a Unit Root, Econometrica, Vol. 49, pp. 1057-1072.
  • Evans M.K., (2003), Practical Business Forecasting, Blackwell Publishers, Oxford.
  • Granger C.W.J., (1981), Some properties of time series data and their use in econometric model specification, Journal of Econometrics, Vol. 16, pp. 121-130.
  • Granger C.W.J., Newbold P., (1974), Spurious regression in econometrics, Journal of Econometrics, Vol. 2, pp. 111-120.
  • Franses P.H., Hobijn B., (1997), Critical values for unit root tests in seasonal time series, Journal of Applied Statistics, Vol. 24, pp. 25-47.
  • Hylleberg S., (1992), Modelling Seasonality, Oxford University Press, Oxford.
  • Hylleberg S., Engle R.F., Granger C.W.J., Yoo B.S., (1990), Seasonal integration and cointegration, Journal of Econometrics, Vol. 44, pp. 215-238.
  • Leybourne S. J., (1995), Testing for unit root using forward and reverse Dickey_Fuller regressions, Oxford Bulletin of Economics and Statistics, Vol. 57, pp. 559-571.
  • Lucas R.E. Expectations and Neutrality of Money, Journal of Economic Theory, April 1972, pp. l03-124.
  • MacKinnon J.G., (1991), Critical Values for Cointegration Tests, [in:] R.F. Engel, Granger С.W.J. (Ed.) Long Run Economic Relationships, Oxford University Press.
  • Maddala G.S., Kim I.-M., (1988), Unit Roots, Cointegration and Structural Change, Cambridge University Press, Cambridge.
  • Muth J.F., (1961), Rational Expectations and the Theory of Price Movements, Econometrica, pp. 315-335.
  • Nelson C.R., Plosser С.I., (1982), Trends and random walks in macro-economic time series: some evidence and implications, Journal of Monetary Economics, Vol. 10, pp. 139-162.
  • Ng S., Perron P., (2001), Lag length selection and the construction of unit root tests with good size and power, Econometrica, Vol. 69, pp. 1519-1554.
  • Rekowski M., (1997), Koniunktura gospodarcza Polski. Analiza grup produktowych. Wydawnictwo Akademia, Poznań.
  • Schreyer P., Emery C., (1996), Short Term Indicators: Using Qualitative Indicators to Update Production Indices, STI Working Papers 1996/3, OECD, Paris.
  • Snowdon, B., Vane H., (2005), Modern Macroeconomics. Its Origin, Development and Current State, EE, UK, MA, USA.
  • Strzała K., (1994), Zastosowanie uogólnionych metod sterowania optymalnego do podejmowania decyzji gospodarczych, Wydawnictwo Uniwersytetu Gdańskiego, Sopot.
  • Żochowski D., (2006), Myśl ekonomiczna wobec cykli koniunkturalnych, pp. 32-74. in M. Drozdowicz-Bieć (Ed.), Wskaźniki wyprzedzające, Prace i Materiały IRG SGH, No 77, Szkoła Główna Handlowa w Warszawie, Warszawa.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171243647

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.