Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 23 | nr 1 | 37--62
Tytuł artykułu

Comparison of the Gini and Zenga Indexes using Some Theoretical Income Distributions Abstract

Treść / Zawartość
Warianty tytułu
Języki publikacji
The most common measure of inequality used in scientific research is the Gini index. In 2007, Zenga proposed a new index of inequality that has all the appropriate properties of an measure of equality. In this paper, we compared the Gini and Zenga indexes, calculating these quantities for the few distributions frequently used for approximating distributions of income, that is, the lognormal, gamma, inverse Gauss, Weibull and Burr distributions. Within this limited examination, we have observed three main differences. First, the Zenga index increases more rapidly for low values of the variation and decreases more slowly when the variation approaches intermediate values from above. Second, the Zenga index seems to be better predicted by the variation. Third, although the Zenga index is always higher than the Gini one, the ordering of some pairs of cases may be inverted. (original abstract)
Opis fizyczny
  • Wrocław University of Economics, Poland
  • Wrocław University of Economics, Poland
  • [1] DAGUM C., Generation and Properties of Income Distribution Functions, [in:] C. Dagum, M. Zenga (Eds.), Income and Wealth Distribution, Inequality and Poverty, Springer-Verlag, New York 1990.
  • [2] DALTON H., The measurement of the inequality of incomes, The Economic Journal, 1920, 30 (119), 348-361.
  • [3] DANCELLI L., On the behaviour of the Z(p) concentration curve, [in:] Income and Wealth Distribution, Inequality and Poverty, C. Dagum, M. Zenga (Eds.), Springer-Verlag, New York 1990.
  • [4] Modelling Income Distributions and Lorenz Curves, D. Chotikapanich (Ed.), Springer, New York 2008.
  • [5] GINI C., Measurement of inequality of incomes, The Economic Journal, 1921, 31 (121), 124-126.
  • [6] HOPKINS E., Inequality, happiness and relative concerns: What actually is their relationship?, The Journal of Economic Inequality, 2008, 6, 351-372.
  • [7] POLISICCHIO M., PORRO F., The I(p) curve for some classical income models, Rapporti di Ricerca del Dipartimento di Metodi Quantitativi per le Scienze Economiche e Aziendali, Università degli, Studi Milano-Bicocca 2008, No. 159, 1-13.
  • [8] POLISICCHIO M., PORRO F., A comparison between Lorenz L(p) curve and Zenga I(p) curve, Statistica Applicata, 2009, 21 (3-4), 289-301.
  • [9] RADAELLI P., On the decomposition by subgroups of the Gini index and Zenga's uniformity and inequality indexes, International Statistical Review, 2010, 78, 81-101.
  • [10] REYNOLDS M., SMOLENSKY E., Public Expenditure, Taxes and the Distribution of Income: The United States, 1950, 1961, 1970, Academic Press, New York 1970.
  • [11] SEN A., FOSTER J.E., On Economic Inequality, Oxford University Press, New York 1997.
  • [12] SUBRAMANIAN S., Indicators on Inequality and Poverty, World Institute for Development Economic Research, United Nations University, Helsinki 2004.
  • [13] WILKINSON R.G., PICKETT K., The Spirit Level, Bloomsbury Press, New York 2010.
  • [14] ZENGA M., Proposta per un indice di concentrazione basato sui rapporti tra quantili di popolazione e quantili di reddito, Giornale degli Economisti e Annali di Economia 1984, 42, 301-326.
  • [15] ZENGA M., Inequality curve and inequality index based on the ratio between lower and upper arithmetic means, Statistica & Applicazioni, 2007, V, 1, 3-27.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.