Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 6 | nr 1 | 1--31
Tytuł artykułu

Divergent Priors and Well Behaved Bayes Factors

Treść / Zawartość
Warianty tytułu
Języki publikacji
Bartlett's paradox has been taken to imply that using improper priors results in Bayes factors that are not well defined, preventing model comparison in this case. We use well understood principles underlying what is already common practice, to demonstrate that this implication is not true for some improper priors, such as the Shrinkage prior due to Stein (1956). While this result would appear to expand the class of priors that may be used for computing posterior odds, we warn against the straightforward use of these priors. Highlighting the role of the prior measure in the behaviour of Bayes factors, we demonstrate pathologies in the prior measures for these improper priors. Using this discussion, we then propose a method of employing such priors by setting rules on the rate of diffusion of prior certainty. (original abstract)
Opis fizyczny
  • School of Economics, University of Queensland
  • Econometric Institute, Erasmus University Rotterdam
  • [1] Bartlett, M. S. (1957) A comment on D.V.Lindley's statistical paradox. "Biometrika", 44, 533-534.
  • [2] Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis (2nd ed.).New York: Springer-Verlag.
  • [3] Berger, J. O. & L. R. Pericchi (1996) The intrinsic Bayes factor for model selection and prediction. "Journal of the American Statistical Association" 19, 109-122.
  • [4] Bernardo, J.M. (1979) Expected information as expected utility. "The Annals of Statistics", 7, 686-690.
  • [5] Campbell J. Y. & R. J. Shiller (1987) Cointegration and tests of present value models. "The Journal of Political Economy", 95:5, 1062-1088.
  • [6] Chao, J. C. & P. C. B. Phillips (1999) Model selection in partially nonstationary vector autoregressive processes with reduced rank structure. "Journal of Econometrics", 91, 227-271.
  • [7] Chib, S. and I. Jeliazkov (2001) "Marginal Likelihood from the Metropolis-Hastings Output, "Journal of the American Statistical Association", 96, 270-281.
  • [8] Fernández, C., E. Ley & M. F. J. Steel (2001) Benchmark priors for Bayesian model averaging. "Journal of Econometrics", 100, 381-427.
  • [9] Gelfand, A.E., & D. K. Dey (1994) Bayesian model choice: asymptotics and exact calculations. "Journal of the Royal Statistical Society Series B", 56, 501-504.
  • [10] Jeffreys, H. (1961) Theory of Probability 3rd ed. Oxford: Clarendon Press.
  • [11] Johansen, S. (1995) Likelihood-based Inference in Cointegrated Vector Autoregressive Models. New York: Oxford University Press.
  • [12] Judge G. G., W.E. Griffiths, R.C. Hill, H. Lutkepohl, & T. Lee (1985) The Theory and Practice of Econometrics. (2nd ed.). New York: Wiley.
  • [13] Kass, R. E. & A. E. Raftery (1995) Bayes Factors. "Journal of the American Statistical Association", 90, 773-795.
  • [14] Kleibergen, F. (2004) Invariant Bayesian inference in regression models that is robust against the Jeffreys-Lindley's paradox. "Journal of Econometrics", 123, 227- 258.
  • [15] Kleibergen, F. & R. Paap (2002) Priors, posteriors and Bayes factors for a Bayesian analysis of cointegration. "Journal of Econometrics", 111, 223-249.
  • [16] Klein, R. W. & S. J. Brown (1984) Model selection when there is minimal prior information. "Econometrica", 52, 1291-1312.
  • [17] Koop, G (2003) Bayesian Econometrics. John Wiley and Sons Ltd, England.
  • [18] Leonard, T. & Hsu, J. S. J. (2001) Bayesian Methods. Cambridge: Cambridge University Press.
  • [19] Lindley, D.V. (1962) Discussion on Professor Stein's paper. "Journal of the Royal Statistical Society Series B", 24, 285-287
  • [20] Lindley, D.V. & Smith, A.F.M. (1972) Bayes estimates for the linear model. "Journal of the Royal Statistical Society Series B", 34, 1-41.
  • [21] Lindley D. V. (1997) Discussion forum: Some comments on Bayes factors. "Journal of Statistical Planning and Inference", 61, 181-189.
  • [22] Magnus, J. R. & H. Neudecker (1988) Matrix Differential Calculus with Applications in Statistics and Econometrics. John Wiley and Sons, New York.
  • [23] Min, C. & Zellner, A., (1993) Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates. "Journal of Econometrics", 56, 89-118.
  • [24] Mittelhammer, R. C., G. G. Judge & D. J. Miller (2000) Econometric Foundations. Cambridge: Cambridge University Press.
  • [25] Muirhead, R.J. (1982) Aspects of Multivariate Statistical Theory . New York: Wiley.
  • [26] Ni, S. X. & D. Sun (2003) Noninformative priors and frequentist risks of Bayesian estimators of vector-autoregressive models. "Journal of Econometrics", 115, 159- 197.
  • [27] O'Hagan, A. (1995) Fractional Bayes factors for model comparison. "Journal of the Royal Statistical Society, Series B", 57, 99-138.
  • [28] Phillips, P. C. B. (1996) Econometric model determination. "Econometrica"64, 763-812.
  • [29] Phillips, P. C. B. & W, Ploberger (1996) An asymptotic theory of Bayesian inference for time series. "Econometrica", 64, 381-412.
  • [30] Poirier, D. (1995) Intermediate Statistics and Econometrics: A Comparative Approach. Cambridge: The MIT Press.
  • [31] Raftery, A.E., D. Madigan & J. A. Hoeting (1997) Bayesian model averaging for linear regression models. "Journal of the American Statistical Association", 92, 179-191.
  • [32] Shannon, C. E. (1948) A mathematical theory of communication. "The Bell System Technical Journal", 27, 378-423.
  • [33] Schwarz, G. (1978) Estimating the dimension of a model. "Annals of Statistics", 6:2, 461-464.
  • [34] Sclove, S. L. (1968) Improved estimators for coefficients in linear regression. "Journal of the American Statistical Association", 63, 596-606
  • [35] Sclove, S.L. (1971) Improved estimation of parameters in multivariate regression. "Sankhya, Series A", 33, 61-66.
  • [36] Spiegelhalter, D. J. & A. F. M. Smith (1982) Bayes factors for linear and log- linear models with vague prior information. "Journal of the Royal Statistical Society, Series B", 44, 377-387.
  • [37] Strachan, R. W. (2003) Valid Bayesian estimation of the cointegrating error correction model. "Journal of Business and Economic Statistics", 21, 185-195.
  • [38] Strachan, R. W. & H. K. van Dijk (2003) Bayesian model selection with an uninformative prior. "Oxford Bulletin of Economics and Statistics", 65, 863-876.
  • [39] Strachan, R. W. & B. Inder (2004) Bayesian analysis of the error correction model. "Journal of Econometrics", 123, 307-325.
  • [40] Strachan, R. W., & H. K. van Dijk (2004) Valuing structure, model uncertainty and model averaging in vector autoregressive processes. Econometric Institute Report EI 2004-23, Erasmus University Rotterdam.
  • [41] Stein, C. (1956) Inadmissibility of the usual estimator for the mean of a multivariate Normal distribution. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1 Berkeley, CA: University of California Press, 197-206.
  • [42] Stein, C. (1960) Multiple Regression. In: I. Olkin (ed.), Contributions to Probability and Statistics in Honor of Harold Hotelling . Stanford: Stanford University Press.
  • [43] Stein, C. (1962) Confidence sets for the mean of a multivariate Normal distribution. "Journal of the Royal Statistical Society, Series B", 24, 265-296.
  • [44] Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics. New York: Wiley.
  • [45] Zellner, A. (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Goel, P.K., Zellner, A. (Eds.), Bayesian Inference and Decision Techniques: Essays in Honour of Bruno de Finetti. North-Holland, Amsterdam, 233-243.
  • [46] Zellner, A. (1994) Bayesian method of moments (BMOM) analysis of mean and regression models. In: Lee, J., Johnson, W., Zellner, A. (Eds.), Prediction and Modelling Honoring Seymour Geisser. Springer, New York, 61-74.
  • [47] Zellner, A. (1997a) Bayesian analysis in econometrics and statistics: The Zellner view and papers. In: Perlman, M., Blaugh, M. (Eds.), Economists of the 20th Century Series, Edward Elgar, Cheltenham, UK
  • [48] Zellner, A. (1997b) The Bayesian method of moments (BMOM): Theory and applications. (Advances in Econometrics). In: Fomby, T., Hill, R. (Eds.), Applying Maximum Entropy to Econometric Problems, Vol. 12. Jai Press, Greenwich, CT, 85-105.
  • [49] Zellner, A. (2002) Bayesian shrinkage estimates and forecasts of individual and total or aggregate outcomes. mimeo University of Chicago.
  • [50] Zellner, A. & J. Tobias (2001) Further results on the Bayesian method of moments analysis of the multiple regression model. "International Economic Review", 42, February.
  • [51] Zellner, A. & W. A. Vandaele (1974) Bayes-Stein estimators for k-means, regression and simultaneous equation models. In Fienberg, S.E. and Zellner, A., (eds.), Studies in 21 Bayesian Econometrics and Statistics in Honor of Leonard J. Savage. Amsterdam: North-Holland, 627-653.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.