Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | nr 35 | 25--43
Tytuł artykułu

Spatial Prediction Models for Real Estate Market Analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
The econometric modeling of real estate prices is an important step in their valuation. As shown in the theory and practice of valuation, the most important determinant of these prices is location. Therefore, models comprising the spatial components give better estimates than a-spatial models. The purpose of this paper is to compare the quality of prediction for several models: a classical linear model estimated with OLS, linear OLS model including geographical coordinates, Spatial Expansion model, spatial lag and spatial error models, and geographically weighted regression. The evaluation will be based on the calibrated models for the real estate market data in Wroclaw in 2011. The study confirms that the inclusion of the spatial aspect of the analysis may result in improvement in the quality of models. Best fit to the data among the presented methods has proved a geographically weighted regression. (original abstract)
Opis fizyczny
  • Business and Decision Poland
  • University of Warsaw, Poland
  • Biecek P. (2013), SmarterPoland: A set of tools developed by the Foundation R package version 1.2.
  • Bitter, C., Mulligan, G., Dall'erba S. (2006), Incorporating spatial variation in housing at tribute prices: A comparison of Geographically weighted regression and the spatial expansion method. Journal of Geographical Systems, 9 (1)
  • Bivand R. (2013), spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-68.
  • Bivand R., Yu, D. (2013), spgwr: Geographically weighted regression. R package version 0.6-24.
  • Brown, Jones (1985), Spatial variation in migration processes and development: a Costa Rican example of conventional modeling augmented by the expansion method. Demography, 22 (3)
  • Brunsdon, C., Fotheringham, AS, Charlton. ME (1996), Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28
  • Brunsdon, C., Fotheringham, AS, Charlton, ME (1998), Geographically weighted regression - modeling spatial non-stationarity. Journal of the Royal Statistical Society, Series D - The Statistician, 47 (3)
  • Brunsdon, C., Fotheringham, AS, Charlton, ME (1998), Spatial nonstationarity and autoregressive models. Environment and Planning A, 30
  • Brunsdon, C., Fotheringham, AS, Charlton, ME (1999), Some notes on parametric signficance tests for Geographically weighted regression. Journal of Regional Science, 39
  • Brunsdon, C., Fotheringham, AS, Charlton, ME (2000), Geographically weighted regression as a statistical model. Working paper, Department of Geography, University of Newcastle.
  • Casetti, E. (1972), Generating models by the expansion method: applications are geographic research. Geographical Analysis, 4
  • Cellmer R. (2010), Spatial analysis of the dynamics of changes in real estate prices premises. Acta Scientiarum Polonorum, Administratio Locorum, 9 (3)
  • Deller, S. Sundaram-Stukel, R. (2012), Spatial patterns in the location Decisions of U.S. credit unions. The Annals of Regional Science, 49 (2)
  • Foster, SA, Gorr, WL (1986), An Adaptive Filter for Estimating spatially Varying Parameters: Application to Modeling Police Hours in Response to Calls for Service. Management Science, 32
  • Fotheringham, AS, Brunsdon, C. (1999), Local forms of spatial analysis. Geographical Analysis, 31
  • Fotheringham, AS, Charlton, ME, Brunsdon, C. (1998), Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis, Environment and Planning A, 30
  • Fotheringham, AS, Charlton, ME, Brunsdon, C. (2002), Geographically weighted regression: the analysis of spatially varying relationships.
  • Freeman (2003) The measurement of environmental and resource values. Resources for the Future, Washington DC
  • Fujita, M., Krugman, P., Venables, A. (2000), The Spatial Economy: Cities, Regions, and International Trade.
  • Gelfand, A.E., Kim, H.J., Sirmans, C.J., Banerjee, S. (2003), Spatial modeling with spatially varying coefficient processes. Journal of the American Statistical Association, 98
  • Harris, P., Fotheringham, AS, Crespo, R., Charlton, M. (2010), The use of Geographically weighted regression for spatial prediction: an evaluation of models using simulated data sets. Mathematical Geoscience, 42
  • Huang, B., Wu, B., Barry, M. (2010), Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24 (3)
  • Ilnicki, D., Janc, K., Flange, M., Szymanowski, M. (2011) Features distribution of stores in the metropolitan for example Wroclaw - the use of geographically weighted regression.
  • Jones, K. (1991) Specifying and estimating multi-level models for geographical research. Transactions of The Institute of British Geographers, 16
  • Jones, J.P., Casetti, E. (1992) Applications of the expansion method.
  • Krige, D.G. (1951) A statistical approach that some mine valuations and allied problems at the Witwatersrand. Master's thesis of the University of the Witwatersrand.
  • Kulczycki, M., Ligas, M. (2007) Geographically weighted regression as a tool for the analysis of real estate market, Geomatics and Environmental Engineering, 1 (2)
  • Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination. Biometrika 78: 691-692
  • Oren S.S., Smith S.A., Wilson R.B. (1982) Non-linear pricing in markets with interdependent demand, Marketing Science, vol.1, no 3, Summer 1982
  • Yu, D.L., Wei, Y.D., Wu, C.S. (2007) Modeling spatial dimensions of housing prices in: Milwaukee, W.I. (red.) Environment and Planning B: Planning and Design, 34
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.