PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2014 | 10 | nr 2 | 44--56
Tytuł artykułu

Bayesian Approach to the Process of Identification of the Determinants of Innovativeness

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bayesian belief networks are applied in determining the most important factors of the innovativeness level of national economies. The paper is divided into two parts. The first presentsthe basic theory of Bayesian networks whereas in the second, the belief networks have been generated by an inhouse developed computer system called BeliefSEEKER which was implemented to generate the determinants influencing the innovativeness level of national economies.Qualitative analysis of the generated belief networks provided a way to define a set of the most important dimensions influencing the innovativeness level of economies and then the indicators that form these dimensions. It has been proven that Bayesian networks are very effective methods for multidimensional analysis and forming conclusions and recommendations regarding the strength of each innovative determinant influencing the overall performance of a country's economy. (original abstract)
Czasopismo
Rocznik
Tom
10
Numer
Strony
44--56
Opis fizyczny
Twórcy
  • University of Information Technology and Management in Rzeszów, Poland
  • University of Information Technology and Management in Rzeszów, Poland
Bibliografia
  • Bouckaert, R. R. (1993). Probabilistic Network Construction Using the Minimum Description Length Principle. In Symbolic and Quantitative Approaches to Reasoning and Uncertainty: European Conference, Lecture Notes in Computer Science 747:41-48.
  • Bouckaert, R. R. (1994). Probabilistic Network Construction Using the Minimum Description Length Principle. Technical report RUU-CS-94-27, Department of Computer Science, Utrecht University.
  • Burge, J., Lane, T. (2006). Improving Bayesian Network Structure Search with Random Variable Aggregation Hierarchies. In Proceedings of the Seventeenth European Conference on Machine Learning, Lecture Notes in Artificial Intelligence 4212:66-77.
  • Chickering, D. M., Heckerman, D., Meek, C. (1997). A Bayesian Approach to Learning Bayesian Networks with Local Structure. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, pp. 80-89.
  • Chickering, D.M., Heckerman, D., Meek, C. (1997). A Bayesian Approach to Learning Bayesian Networks with Local Structure. Technical report MSR-TR-97-07, Microsoft Research.
  • Chickering, D. M. (2002). Optimal Structure Identification with Greedy Search. Journal of Machine Learning Research 3:507-55.
  • Coad, A., Cowling, M., Nightale, P., Pellegrino, G., Savona, M., Siepel, H. (2014).UK Innovation Survey. Innovative Firms and Growth, Science and Technology Policy Research.
  • Cooper, G. F., Herskovitz, E. (1992). A Bayesian Method for the Induction of probabilistic networks from data. Mach Learn 9:309-47.
  • Coupe' V. M. H., van der Gaag, L. C. (2000). Sensitivity Analysis: An Aid for Probability Elicitation. KnowlEng Rev 15:215-32.
  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. New York: Springer.
  • Czyżewska, M., Pancerz, K., Szkoła, J. (2012).Towards Assessment of Indicators Influence on Innovativeness of Countries' Economies: Selected Soft Computing Approaches. In World Academy of Science, Engineering and Technology, 70:115-118.
  • Czyżewska, M., Pancerz, K., Szkoła, J. (2012).Self-Organizing Feature Maps in Correlating Groups of Time Series: Experiments with Indicators Describing Entrepreneurship. In Proceedings of the Workshop on Concurrency, Specification and Programming, ed. L. Popova-Zeugmann, 1:73-78.
  • de Campos, L. M., Huete, J. F. (2000). Approximating Causal Orderings for Bayesian Networks using Genetic Algorithms and Simulated Annealing. In Proceedings of the Eight Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Madrid, Spain, pp. 333-340.
  • de Campos, L. M., Ferna'ndez-Luna, J. M., Ga'mez, J. A., Puerta, J. M. (2002). Ant Colony Optimization for Learning Bayesian Networks. International Journal of Approximate Reasoning 31(3):291-311.
  • de Santana, A. L., Frances, C. R., Rocha, C. A., Carvalho, S. V., Vijaykumar, N. L., Rego, L. P., Costa, J. C. (2007a). Strategies for Improving the Modeling and interpretability of Bayesian networks. Data and Knowledge Engineering 63(1):91-107.
  • Faulkner, E. (2007). K2GA: Heuristically Guided Evolution of Bayesian Network Structures from Data. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, IEEE, pp. 18-25.
  • van der Gaag, L. C., Helsper, E. M. (2002). Experiences with Modelling Issues in Building Probabilistic Networks. In Proceedings of EKAW on Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, Gomez-Perez, A., Benjamins, V. R. (eds). Lecture Notes in Artificial Intelligence 2473:21- 26.
  • van der Gaag L. C., Renooij, S., Witteman, C. L. M., Aleman, B. M. P., Taal, B. G. (2002). Probabilities for a Probabilistic Network: A Case Study in Esophageal Cancer. ArtifIntell Med 25:123-148.
  • Glymour, C., Cooper, G. F. (1999). Computation, Causation, Discovery. Menlo Park, CA: MIT Press.
  • Grzelak, M. M., Starzyńska, W. (2014). Multivariate Statistical Analysis of Innovativeness of Manufacturing Companies in Poland - Selected Aspects. In XXI Journals ASEPUMA - IX EncuentroInternacionalAnales de ASEPUMA no 21: 306.
  • Grzymała-Busse, J. W., Hippe, Z. S., Mroczek, T. (2005). System BeliefSEEKER - A New Approach to Induction of Belief Networks and Belief Rules. In Artificial Intelligence Methods (AI-METH), Burczyński, T., Cholewa, W., Moczulski, W., 59-60, Silesian University of Technology Edit. Office.
  • Grzymała-Busse, J. W., Hippe, Z. S., Mroczek, T. (2007). Deriving Belief Networks and Belief Rules form Data: A Progress Report, In: Transactions on Rough Sets VII: Commemorating the Life and Work of Zdzislaw Pawlak, Part II (Lecture Notes in Computer Science), Peters, J. F., Skowron, A., Marek, V. W, Orlowska, W., Slowinski, W., Ziarko, W., 53-69, Berlin-Heidelberg: Springer-Verlag.
  • Heckerman, D. (1999). A Tutorial on Learning with Bayesian Networks. In Learning in Graphical Models, ed. M. Jordan, MIT Press, Cambridge, MA.
  • Hwang, K. B., Lee, J. W., Chung, S. W., Zhang, B. T. (2002). Construction of Large-scale Bayesian Networks by Local to Global Search. In Trends in Artificial Intelligence: Proceedings of the Seventh Pacific Rim International Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence 2417:375-384.
  • Innovation Union Scoreboard 2014, European Union 2014, http://ec.europa.eu/enterprise/policies/innovation/ policy/innovation- scoreboard/index_en.htm.
  • Jensen, F. V (2001). Bayesian Networks and Decision Graphs. New York: Springer- Verlag.
  • Kennedy, J., Eberhart, R. C. (1997). A Discrete Binary Version of the Particle Swarm Optimization Algorithm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 5, IEEE, pp. 4104- 4108.
  • Kirkpatrick, S., Gelatt, C. D. Jr., Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science 220 (4598):671-680.
  • Korver, M., Lucas, P. J. F. (1993). Converting a Rule-based Expert System into a Belief Network. Medical Informatics 18(3):219-24.
  • Lam, W., Bacchus, F. (1993). Using Causal Information and Local Measures to Learn Bayesian Networks. In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelligence, Heckerman, D., Mamdani, A. (eds). Morgan Kaufmann, pp. 243-250.
  • Lam, W., Bacchus, F. (1994). Learning Bayesian Belief Networks: an Approach Based on the MDL Principle. Computational Intelligence 10(3):269-293.
  • Larranaga, P., Kuijpers, C. M. H., Murga RH, Yurramendi Y (1996) Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics Part A 26(4):487- 493.
  • Larranaga, P., Poza, M., Yurramendi, Y., Murga, R. H., Kuijpers, C. M. H. (1996). Structure Learning of Bayesian Networks by Genetic Algorithms: a Performance Analysis of Control Parameters. Transactions on Pattern Analysis and Machine Intelligence 18(9):912-926.
  • Li, X. L., Wang, S. C., He, X. D. (2006). Learning Bayesian Networks Structures Based on Memory Binary Particle Swarm Optimization. In Proceedings of the Sixth International Conference on Simulated Evolution and Learning, Lecture Notes in Computer Science 4247:568574.
  • Liu, F., Tian, F., Zhu, Q. (2007). An Improved Greedy Bayesian Network Learning Algorithm on Limited Data. In Proceedings of the Seventeenth International Conference on Artificial Neural Networks (ICANN 2007), Lecture Notes in Computer Science, Part I 4668:49-57.
  • Liu, F., Zhu, Q. (2007). The Max-relevance and Min-redundancy Greedy Bayesian Network Learning Algorithm. Lecture Notes in Computer Science, Part I 4527:346-356.
  • Liu, F., Zhu, Q. (2007). Max-relevance and Min-redundancy Greedy Bayesian Network Learning on High Dimensional Data. In Proceedings of the Third International Conference on Natural Computation, Lei J, Yoo J, Zhang Q (eds), IEEE, pp. 217-221.
  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks 4, IEEE, pp 1942-1948
  • Meuer, J., Rupietta, C. (2014). Backes-gellner U, Idiosyncrasies within and Interdependencies between Innovation Systems: A Mixed Method Approach. Paper presented at the DRUID Society Conference 2014, CBS, Copenhagen, June 16-18.
  • Mitchell, T. (1997). Machine Learning. M. McGraw Hill.
  • Mroczek, T., Grzymała-Busse, J. W., Hippe, Z. S. (2004). Rules from Belief Networks: A Rough Set Approach. In Rough Sets and Current Trends in Computing, Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J., 483-487, Berlin-Heidelberg: Springer- Verlag.
  • Mroczek, T., Hippe, Z. S. (2014). Conversion of Belief Networks into Belief Rules: A New Approach, Bulletin of the Polish Academy of Sciences (in review).
  • Peng, H., Ding, C. (2003). Structure Search and Stability Enhancement of Bayesian Networks. In Proceedings of the Third IEEE International Conference on Data Mining, Wu, X., Tuzhilin, A., Shavlik, J. (eds.). IEEE Computer Society, pp. 621-624.
  • Ramoni, M., Sebastiani, P. (1999). Bayesian Methods for Intelligent Data Analysis. Intelligent Data Analysis: An Introduction, Berthold, M., Hand, D. J. (eds.). New York: Springer-Verlag, pp. 128-166.
  • Renooij, S., van der Gaag, L. C. (2002). From Qualitative to Quantitative Probabilistic Networks. In Darwiche, A., Friedman, N. (eds.). Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, pp. 422-9.
  • Russell, S. J., Norvig, P. (2002). Artificial Intelligence: A Modern Approach (2nd ed.). New Jersey: Prentice Hall.
  • Sahin, F., Devasia, A. (2007). Distributed Particle Swarm Optimization for Structural Bayesian Network Learning. In Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Chan, F. T. S., Tiwari, M. K. (eds.). I-Tech Education and Publishing, chapter 27, Vienna, Austria, pp. 505-532.
  • Shwe, M. A., Middleton, B., Heckerman, D. E., Henrion, M., Horvitz, E. J., Lehmann, H. P., Cooper, G. F. (1991). Probabilistic Diagnosis using a Reformulation of the INTERNIST-1/QMR knowledge base. I. The Probabilistic Model and Inference Algorithms. Methods of Information in Medicine, 30(4):241-255.
  • Steck, H. (2000). On the Use of Skeletons when Learning in Bayesian Networks. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Boutilier, C., Goldszmidt, M. (eds.). Morgan Kaufmann, pp. 558-565.
  • Suzuki, J. (1999). Learning Bayesian Belief Networks Based on the MDL Principle: an Efficient Algorithm using the Branch and Bound Technique. IEICE Transactions on Information and Systems E82-D(2): 356-367.
  • Xing-Chen, H., Zheng, Q., Lei, T., Li-Ping, S. (2007). Research on Structure Learning of Dynamic Bayesian Networks by Particle Swarm Optimization. In Proceedings of the IEEE Symposium on Artificial Life, IEEE, pp. 85-91.^
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171285851

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.