Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | vol 1, iss. 1 | 39--45
Tytuł artykułu

An empirical Comparison of Different Risk Measures in Portfolio Optimization

Treść / Zawartość
Warianty tytułu
Języki publikacji
Risk is one of the important parameters in portfolio optimization problem. Since the introduction of the mean-variance model, variance has become the most common risk measure used by practitioners and researchers in portfolio optimization. However, the mean-variance model relies strictly on the assumptions that assets returns are multivariate normally distributed or investors have a quadratic utility function. Many studies have proposed different risk measures to overcome the drawbacks of variance. The purpose of this paper is to discuss and compare the portfolio compositions and performances of four different portfolio optimization models employing different risk measures, specifically the variance, absolute deviation, minimax and semi-variance. Results of this study show that the minimax model outperforms the other models. The minimax model is appropriate for investors who have a strong downside risk aversion.(original abstract)
Opis fizyczny
  • School of Mathematical Sciences, Universiti Kebangsaan Malaysia
  • School of Mathematical Sciences, Universiti Kebangsaan Malaysia
  • School of Mathematical Sciences, Universiti Kebangsaan Malaysia
  • Bawa, V., 1975. "Optimal rules for ordering uncertain prospects", Journal of Financial Economics, 2, pp. 95-121
  • Biglova, A., Ortobelli, S., Rachev, S. and Stoyanov, S., 2004. "Different approaches to risk estimation in portfolio theory", Journal of Portfolio Management, Vol. 31, Issue 1, pp. 103-112
  • Brooks, C. and Kat, H., 2002. "The statistical properties of hedge fund index returns and their implications for investors", Journal of Alternative Investments, 5, pp. 26-44
  • Byrne, P and Lee, S., 2004. "Different risk measures: Different portfolio compositions?", Journal of Property Investment & Finance, Vol. 22, Issue 6, pp. 501-511
  • Fishburn, P., 1977. "Mean-risk analysis with risk associated with below-target returns", The American Economic Review, 67, pp. 116-126
  • Grootveld, H. and Hallerbach, W., 1999. "Variance vs Downside risk: Is there really that much difference?", European Journal of Operational Research, Vol. 114, Issue 2, pp. 304-319
  • Konno, H. and Yamazaki, H., 1991. "Mean-absolute deviation portfolio optimization model and ITS applications to Tokyo stock market", Management Science, Vol. 37, No. 5, pp. 519-531
  • Konno, H., Waki, H. and Yuuki, A., 2002. "Portfolio optimization under lower partial risk measures", Asian-Pasific Financial Markets 9 (2002), pp. 127-140
  • Markowitz, H., 1952. "Portfolio selection", Journal of Finance, Vol. 7, No. 1, pp.77-91
  • Markowitz, H., 1959. Portfolio selection: Efficient diversification of investments, John Wiley & Sons, New York
  • Pratt, J., 1964. "Risk aversion in the small and in the large", Econometrica, Vol. 32, No. 1/2, pp. 122-136
  • Simaan, Y., 1997. "Estimation risk in portfolio selection: The mean variance model versus the mean absolute deviation model", Management Science, Vol. 43, No. 10, pp. 1437-1446
  • Young, M., 1998. "A minimax portfolio selection rule with linear programming solution", Management Science, Vol. 44, No. 5, pp. 673-683
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.