Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 42 | nr 2 | 365--386
Tytuł artykułu

T-cell Proliferation on Immunopathogenic Mmechanism of Psoriasis: a Control Based Theoretical Approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
Psoriasis vulgaris is a common, worldwide autoimmune skin disorder characterized by T-cells mediated hyperproliferation of keratinocytes. The feature of T-cells arbitrated psoriatic lesions is the epidermal infiltration of oligoclonal CD8+T-cells and also of CD4+T-cells in the dermis. Psoriatic scratches are identified by red and enlarged lesions along with silver whitish scales. In this article, we propose a mathematical model for psoriasis, involving a set of differential equations, concerning T-cells, dendritic cells and epidermal keratinocytes. We introduce T-cell proliferation in the system, where T-cells are generated through expansion of accessible CD4+T-cells from precursors. We are interested in observing how the cell biological system develops through T-cell proliferation in presence of control with respect to T-cells and keratinocytes. We study the model in both implicit and explicit ways and measure the effect of drug on the system through impulsive drug therapy. (original abstract)
Opis fizyczny
  • Jadavpur University, Kolkata, India
  • Jadavpur University, Kolkata, India
  • Akbara, A.N. and Salmonb,M. (1997) Cellular environments and apoptosis: tissue micro environments control activated T-cell death. Immunology Today 18(2), 72-76.
  • Baker, A.S. and Fry, L. (1992) The immunology of psoriasis. British Journal of Dermatology 126, 1-9.
  • Birkhoff, G. and Rota, G.C. (1982) Ordinary Differential Equations. Chapman and Hall.
  • Bonnans, J.F. and Hermant, A. (2009) Revisiting the analysis of optima control problems with several state constraints. Control and Cybernetics 38 (4A), 1021-1052.
  • Bonnard, B. and Sugny, D. (2009) Geometric optimal control and twolevel dissipative quantum systems. Control and Cybernetics 38 (4A), 1053-1080.
  • Campion, A.L., Gagnerault, M.C., Auffray, C., Becourt, C., Riviere, M.P., Lallemand, E., Bienvenu, B., Martin, B., LepaulT, F. and Lucas, B. (2009) Lymphopenia-induced spontaneous Tcell proliferation as a cofactor for autoimmune disease development. Blood 114(9), 1784-1793.
  • De Pillis, L.G. and Radunskaya, A. (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Journal of Theoretical Medicine 3(2), 79-100.
  • De Souza, J.A.M.F., Caetano, M.A.L. and Yoneyama, T. (2000) Optimal Control Theory Applied to the Anti-Viral Treatment of AIDS. Decision and Control, Proceedings of the 39th IEEE, 4839-4844.
  • Eddy, D.J., Burrows, D. and Bridges, J.M. (1990) Clearance of severe psoriasis after allogenic bone marrow transplantation. British Medical Journal 300, 908.
  • Fister, K.R. and Panetta, J.C. (2000) Optimal Control Applied to Cell-Cycle-Specific Cancer Chemotherapy. SIAM Journal Applied Mathematics 60(3), 1059-1072.
  • Fleming, W.H. and Rishel R.W. (1975) Deterministic and Stochastic Optimal Control. Springer Verlag.
  • Gaston, L., Lassonde, M., Bernier-Buzzanga, J.B., Hodgins, S. and Crombez, J.C. (1987) Psoriasis and stress: A prospective study. Journal of the American Academy of Dermatology 17(1), 82-86.
  • Ghosh, N., Singh, P.N. and Kumar, V. (2008) Novel immunobiologics for psoriasis. Indian J Pharmacol 40(3), 95-102.
  • Griffiths, T.W., Griffiths, C.E.M. and VoorheeS, J.J. (1995) Immunopathogenesis and immunotherapy of psoriasis. Dermatologic Clinics 13, 739-749.
  • Gudjonsson, J.E., Johnston, A., Sigmundsdottir, H. and Valdi-Marsson, H. (2004) Immunopathogenic mechanisms in psoriasis. Clinical and Experimental Immunology 135(1), 1-8.
  • Joshi, H.R. (2002) Optimal Control of an HIV Immunology Model. Optimal control Application and Methods 23(4), 199-213.
  • Kirschner, D., Lenhart, S. and Serbin, S. (1997) Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology 35, 775-792.
  • Krogstad, A.L., Swanbeck, G. and Wallin, B.J. (1995) Axon reflex mediated vasodilation in the psoriatic plaque. Journal of Investigative Dermatology 104, 872-876.
  • Krueger, J.G. and Bowcock, A. (2005) Psoriasis pathophysiology: Current concepts of pathogenesis. Ann Rheum Dis 64(2), 30-36.
  • Lou, J., Chen, L. and Ruggeri, T. (2009) An Impulsive Differential Model on Post Exposure Prophylaxis to HIV-1 Exposed Individual. Journal of Biological Systems 17(4), 659-683.
  • Lou, J. and Smith, R.J. (2011), Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide. Journal of Theoretical Biology 268, 1-13.
  • Lukes, D.L. (1982) Differential Equations: Classical to Controlled. Mathematics in Science and Engineering. Academic Press.
  • Morganroth, G.S., Chan, L.S., Weinstein, G.D., Voorhees, J.J. and Cooper, K.D. (1991) Proliferating Cells in Psoriatic Dermis Are Comprised Primarily of T Cells, Endothelial Cells, and Factor XIIIa+ Perivascular Dendritic Cells. Journal of Investigative Dermatology 96, 1523-1747.
  • Murray, J.M. (1990 a) Optimal control for a cancer chemotherapy problem with general growth and loss functions. Mathematical Biosciences 98(2), 273-287.
  • Murray, J.M. (1990 b) Some optimal control problems in cancer chemotherapy with a toxicity limit. Mathematical Biosciences 100, 49-67.
  • Roy, P.K. and Bhadra, J. (2010) Comparative study of the suppression on T-cell and Dendritic cells in a mathematical model of Psoriasis. International Journal of Evolution Equation 5(3), 309-326.
  • Roy, P.K., Bhadra, J. and Chattopadhyay, B. (2010) Mathematical Modeling on Immunopathogenesis in Chronic Plaque of Psoriasis: A Theoretical Study. Lecture Notes in Engineering and Computer Science 1, 550-555.
  • Roy, P.K. and Chatterjee, A.N. (2010) T-cell Proliferation in a Mathematical Model of CTL Activity Through HIV-1 Infection. Proceedings of the World Congress on Engineering I, 615-620.
  • Roy, P.K., Datta, A. and Chatterjee, A.N. (2011) Saturation Effects on Immunopathogenic Mechanism of Psoriasis: A Theoretical Approach. Acta Analysis Functionalis Applicata 13(3), 310-318.
  • Roy, P.K. and Datta, A. (2013) Impact of Cytokine Release in Psoriasis: A Control Based Mathematical Approach. Journal of Nonlinear Evolution Equations and Applications 2013(3), 23-42.
  • Roy, P.K. and Datta, A. (2012) Negative Feedback Control may Regulate Cytokines Effect during Growth of Keratinocytes in the Chronic Plaque of Psoriasis: A Mathematical Study. International Journal of Applied Mathematics 25(2), 233-254.
  • Sabat, R., Philipp, S., H¨Oflich, C., Kreutzer, S., Wallace, E., Asadullah, K., Volk, H.D., Sterry, W. and Wolk, K. (2007) Immunopathogenesis of psoriasis. Experimental Dermatology 16(10), 779-798.
  • Smith, R.J. (2008) Explicitly accounting for antiretroviral drug uptake in theoretical HIV models predicts long-term failure of protease-only therapy. Journal of Theoretical Biology 251(2), 227-237.
  • Smith, R.J. and Wahl, L.M. (2005) Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. The Bulletin of Mathematical Biology 67(4), 783-813.
  • Snowden, J.H. and Heaton D.C. (1997) Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: further evidence for adoptive autoimmunity. British Journal of Dermatology 137, 130-132.
  • Tian, B.D., Qiu, Y.H. and Wang, H.J. (2008) Equilibriums and permanencje for an Autonomous competitive system with Feed Back Control. Applied Mathematical Sciences 2(50), 2501-2508.
  • Vladirmirsson, H., Baker, B.S. and Jondottir, I. (1986) Psoriasis: a disease of abnormal proliferation induced by T lymphocytes. Immunology Today 7, 256-259.
  • White, S.H., Newcomer, V.D., Mickey, M.R. and Terasaki, P.I. (1972) Disturbance of HL-A Antigen Frequency in Psoriasis. The New England Journal of Medicine 287(15), 740-743.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.