Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | nr 5 | 26
Tytuł artykułu

Lottery valuation using the aspiration / relative utility function

Treść / Zawartość
Warianty tytułu
Języki publikacji
The paper presents a method for lottery valuation using the relative utility function. This function was presented by Kontek (2009) as "the aspiration function" and resembles the utility curve proposed by Markowitz (1952A). The paper discusses lotteries with discrete and continuous outcome distributions as well as lotteries with positive, negative and mixed outcomes providing analytical formulas for certainty equivalents in each case. The solution is similar to the Expected Utility Theory approach and does not use the probability weighting function - one of the key elements of Prospect Theory. Solutions to several classical behavioral problems, including the Allais paradox, are presented, demonstrating that the method can be used for valuing lotteries even in more complex cases of outcomes described by a combination of Beta distributions. The paper provides strong arguments against Prospect Theory as a model for describing human behavior and lays the foundations for Relative Utility Theory - a new theory of decision making under conditions of risk.(original abstract)
Opis fizyczny
  • Artal Investments
  • Allais, M., (1953). Le comportement de l'homme rationnel devant le risque: critique des postulats etaxiomes de l'école Américaine. "Econometrica "21, 503-546.
  • Bernoulli D., (1738). translated by Dr. Lousie Sommer. (January 1954). Exposition of a New Theory on the Measurement of Risk. "Econometrica" 22 (1): 22-36. doi:10.2307/1909829.
  • Cramer G., (1728). A letter to Nicolas Bernoulli, May 21, 1728, Sources/Montmort/stpetersburg.pdf
  • Edwards W., (1961). Behavioral Decision Theory. Ann. Rev. Psych., 12, 473-479.
  • Handa J., (1977). Risk, Probabilities, and a New Theory of Cardinal Utility. Journal of "Political Economy", Vol. 85, No 1, 97-122.
  • Kahneman, D., Tversky, A., (1979). Prospect theory: An analysis of decisions under risk. "Econometrica", 47, 313-327.
  • Kontek K., (2009). On Mental Transformations, submitted to the Review of Behavioral Finance.
  • Kumaraswamy, P., (1980). A generalized probability density function for double-bounded random processes. J"ournal of Hydrology" 46: 79-88. doi:10.1016/0022-1694(80)90036-0.
  • Markowitz H., (1952A). The Utility of Wealth. "Journal of Political Economy", Vol. 60, 151-158.
  • Markowitz H., (1952B). Portfolio Selection," Journal of Finance", 7(1), 77-91.
  • Markowitz H., (1959). Portfolio Selection, Efficient Diversification of Investments. John Willey, New York.
  • von Neumann J., Morgenstern O., (1944). Theory of Games and Economic Behavior, Princeton University Press.
  • Prelec D., (1998). The Probability Weighting Function. "Econometrica", 66:3 (May), 497-527.
  • Quiggin J., (1982). A theory of anticipated utility. J"ournal of Economic Behavior and Organization" 3(4), 323-43.
  • Savage L. J., (1954). The Foundations of Statistics. John Wiley and Sons, New York.
  • Tversky A., Kahneman D., (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty." Journal of Risk and Uncertainty", vol. 5(4), October, 297-323.
  • Wakker P., (1989). Continuous subjective expected utility with non-additive probabilities. "Journal of Mathematical Economics, Elsevier", vol. 18(1), 1-27, February.
  • Williams C.A. Jr. (1966). Attitudes toward Speculative Risks as an Indicator of Attitudes toward Pure Risks. "Journal of Risk and Insurance "33(4), 577-586.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.