PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 42 | nr 2 | 491--502
Tytuł artykułu

Algebraic Observability of Linear Differential-Algebraic Systems with Delay

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the problem of algebraic observability for linear differential-algebraic systems with delay. For such systems, we present the observability matrix. By algebraic properties of the matrix we define some concepts of observability. We give necessary and sufficient conditions of these algebraic observabilities. We prove relations between these types of observabilities along with spectral observability. Practical verifiability of the conditions is demonstrated on several examples. (original abstract)
Rocznik
Tom
42
Numer
Strony
491--502
Opis fizyczny
Twórcy
  • Bialystok University of Technology, Poland
Bibliografia
  • HAUTUS M. L. J. (1969), Controllability and observability conditions of linear autonomous systems. Indagationes Mathematicae, XXXI, Nederl. Akad. Wetensch., Proc., Ser A 72, 443-448.
  • KAMEN E. W. (1978), An operator theory of linear functional differentia equations. J. Differential Equations 27(2), 274-297.
  • LEE E. B. (1976), Calculus of Variations and Control. London: Academic Press.
  • LEE E. B. (1979), Class Notes on Infinite Dimensional Systems Univ. of Minnesota.
  • LEE E. B., OLBROT A. (1981), Observability and related structural results for linear hereditary systems. Int. J. Control 34(6), 1061-1078.
  • MARCHENKO V. M., PODDUBNAYA O. N. (2002), Representations of solutions for controlled hybrid systems. Problems of Control and Informatics (Kiev), 6, 17-25. (English translation: (2002) Journal of Automation and Information Sciences, 34, 11-19).
  • MARCHENKO V.M., PODUBNAYA O.N. (2002), Expansion of solutions of controlled hybrid systems in a series in solutions of their constituent equations (in Russian). Kibern. Vychisl. Tech., 135, 39-49.
  • MARCHENKO V. M., PODDUBNAYA O. N., ZACZKIEWICZ Z. (2006), On the observability of linear differential-algebraic systems with delays. IEEE Trans. Automat. Contr., 51(8), 1387-1393.
  • MARCHENKO V. M., ZACZKIEWICZ Z. (2005), Observability for Linear Di-fferential-Algebraic Systems with Delays. CD ROM Proc. 11th IEEE Intern. Conf. on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 29 August - 1 September 2005, 299-303.
  • MORSE A. S. (1976), Ring models for delay-differential systems. Automatica- J. IFAC 12(5), 529-531.
  • OLBROT A. W., ZAK S. H. (1980), Controllability and observability problems for linear functional-differential systems. Functional-differential Systems and Related Topics. Higher College Engrg., Zielona Góra, 244-255.
  • SONTAG E. D. (1976), On finitely accessible and finitely observable rings. J. Pure Appl. Algebra 8(1), 97-104.
  • ZACZKIEWICZ Z., MARCHENKO V. M. (2006), Observability of small solutions of linear differential-algebraic systems with delays. Control and Cybernetics 35(4), 997-1013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171308203

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.