PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 2 | 209--217
Tytuł artykułu

Improving the performance of machine learning classifiers for Breast Cancer diagnosis based on feature selection

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposed a comprehensive algorithm for building machine learning classifiers for Breast Cancer diagnosis based on the suitable combination of feature selection methods that provide high performance over the Area Under receiver operating characteristic Curve (AUC). The new developed method allows both for exploring and ranking search spaces of image-based features, and selecting subsets of optimal features for feeding Machine Learning Classifiers (MLCs). The method was evaluated using six mammography-based datasets (containing calcifications and masses lesions) with different configurations extracted from two public Breast Cancer databases. According to the Wilcoxon Statistical Test, the proposed method demonstrated to provide competitive Breast Cancer classification schemes reducing the number of employed features for each experimental dataset.(original abstract)
Słowa kluczowe
Rocznik
Tom
2
Strony
209--217
Opis fizyczny
Twórcy
autor
  • Campus da FEUP
  • Universitário de Santiago, Portugal
  • Universitário de Santiago, Portugal
autor
  • Centro Hospitalar São João
  • Centro Hospitalar São João
Bibliografia
  • Althuis M. D., Dozier J. M., Anderson W. F., Devesa S. S., and Brinton L. A., "Global trends in breast cancer incidence and mortality 1973-1997", Int. J. Epidemiol., vol. 34, pp. 405-412, April 1, 2005, http://dx.doi.org/10.1093/ije/dyh414.
  • "American College of Radiology (ACR) ACR BIRADS - Mammography", in ACR Breast Imaging Reporting and Data System, Breast Imaging Atlas, Reston, VA, 2003.
  • Alolfe M. A., Youssef A. M., Kadah Y. M., and Mohamed A. S., "Computer-Aided Diagnostic System based on Wavelet Analysis for Microcalcification Detection in Digital Mammograms", in Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International, 2008, pp. 1-5, http://dx.doi.org/10.1109/CIBEC.2008.4786080.
  • Brown J., Bryan S., and Warren R., "Mammography screening: an incremental cost effectiveness analysis of double versus single reading of mammograms", BMJ (Clinical research ed.), vol. 312, pp. 809-812, 1996, http://dx.doi.org/10.1136/bmj.312.7034.809.
  • Christobel A., "An Empirical Comparison of Data mining Classification Methods", International Journal of Computer Information Systems, vol. 3, 2011.
  • Ciatto S., Houssami N., Gur D., Nishikawa R. M., Schmidt R. A., Metz C. E., et al., "Computer-Aided Screening Mammography", N Engl J Med, vol. 357, pp. 83-85, July 5, 2007, http://dx.doi.org/10.1056/NEJMc071248.
  • Dash M. and Liu H., "Feature Selection for Classification", Intelligent Data Analysis, vol. 1, pp. 131-156, Jan 1, 1997.
  • Dem˘sar J., "Statistical comparisons of classifiers over multiple data sets", The Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
  • Duda R. O., Hart P. E., and Stork D. G., Pattern Classification (2nd Edition): Wiley-Interscience, 2000.
  • Elter M. and Horsch A., "CADx of mammographic masses and clustered microcalcifications: a review", Medical physics, vol. 36, pp. 2052-2068, 2009, http://dx.doi.org/10.1118/1.3121511.
  • Flannery B. P., Press W. H., Teukolsky S. A., and Vetterling W., "Numerical recipes in C", Press Syndicate of the University of Cambridge, New York, 1992.
  • Fu J. C., Lee S. K., Wong S. T. c., Yeh J. Y., Wang A. H., and Wu H. K., "Image segmentation feature selection and pattern classification for mammographic microcalcifications", Computerized Medical Imaging and Graphics, vol. 29, pp. 419-429, Sep 2005, http://dx.doi.org/10.1016/j.compmedimag.2005.03.002.
  • García López F., García Torres M., Melián Batista B., Moreno Pérez J. A., and Moreno-Vega J. M., "Solving feature subset selection problem by a parallel scatter search", European Journal of Operational Research, vol. 169, pp. 477-489, 2006, http://dx.doi.org/10.1016/j.ejor.2004.08.010.
  • Guyon I. and Elisseeff A., "An Introduction to Feature Extraction", in Feature Extraction. vol. 207, I. Guyon, M. Nikravesh, S. Gunn, and L. Zadeh, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 1-25, http://dx.doi.org/10.1007/978-3-540-35488-8_1.
  • Guyon I. and Elisseeff A., "An introduction to variable and feature selection", J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
  • Hadjiiski L., Chan H. P., Sahiner B., Helvie M. A., Roubidoux M. A., Blane C., et al., "Improvement in radiologists' characterization of malignant and benign breast masses on serial mammograms with computer-aided diagnosis: an ROC study", Radiology, vol. 233, pp. 255-65, Oct 2004, http://dx.doi.org/10.1148/radiol.2331030432.
  • Hadjiiski L., Sahiner B., Helvie M. A., Chan H. P., Roubidoux M. A., Paramagul C., et al., "Breast masses: computer-aided diagnosis with serial mammograms", Radiology, vol. 240, pp. 343-56, Aug 2006, http://dx.doi.org/10.1148/radiol.2401042099.
  • Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., and Witten I. H., "The WEKA data mining software: an update", ACM SIGKDD explorations newsletter, vol. 11, pp. 10-18, 2009, http://dx.doi.org/10.1145/1656274.1656278.
  • Haralick R. M., Shanmuga.K, and Dinstein I., "Textural Features for Image Classification", IEEE Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973, http://dx.doi.org/10.1109/Tsmc.1973.4309314.
  • Hastie T., Tibshirani R., Friedman J., and Franklin J., "The elements of statistical learning: data mining, inference and prediction", The Mathematical Intelligencer, vol. 27, pp. 83-85, 2005.
  • Hollander M. and Wolfe D. A., Nonparametric statistical methods, 2nd Edition ed.: Wiley-Interscience, 1999.
  • Holte R., "Very Simple Classification Rules Perform Well on Most Commonly Used Datasets", Machine Learning, vol. 11, pp. 63-90, 1993/04/01 1993, http://dx.doi.org/10.1023/A:1022631118932.
  • Horsch K., Giger M. L., Vyborny C. J., Lan L., Mendelson E. B., and Hendrick R. E., "Classification of breast lesions with multimodality computer-aided diagnosis: observer study results on an independent clinical data set", Radiology, vol. 240, pp. 357-68, Aug 2006, http://dx.doi.org/10.1148/radiol.2401050208.
  • Hu Y. H. and Hwang J. -N., "Introduction to Neural Networks for Signal Processing", in Handbook of neural network signal processing, ed: CRC press, 2001.
  • Huo Z., Giger M. L., Vyborny C. J., and Metz C. E., "Breast cancer: effectiveness of computer-aided diagnosis observer study with independent database of mammograms", Radiology, vol. 224, pp. 560-8, Aug 2002, http://dx.doi.org/10.1148/radiol.2242010703.
  • Jesneck J. L., Lo J. Y., and Baker J. A., "Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors", Radiology, vol. 244, pp. 390-8, Aug 2007, http://dx.doi.org/10.1148/radiol.2442060712.
  • Kamangar F., Dores G. M., and Anderson W. F., "Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world", Journal of clinical oncology, vol. 24, pp. 2137-2150, 2006, http://dx.doi.org/10.1200/JCO.2005.05.2308.
  • Kira K. and Rendell L. A., "A practical approach to feature selection", presented at the Proceedings of the ninth international workshop on Machine learning, Aberdeen, Scotland, United Kingdom, 1992.
  • Lauria A., Fantacci M. E., Bottigli U., Delogu P., Fauci F., Golosio B., et al., "Diagnostic performance of radiologists with and without different CAD systems for mammography", in Medical Imaging 2003, 2003, pp. 51-56, http://dx.doi.org/10.1117/12.480079.
  • Lee S. -K., Chung P. -C., Chang C. -I., Lo C. -S., Lee T., Hsu G. -C., et al., "Classification of clustered microcalcifications using a Shape Cognitron neural network", Neural Networks, vol. 16, pp. 121-132, Jan 2003, http://dx.doi.org/10.1016/S0893-6080(02)00164-8.
  • Liu H. and Setiono R., "Chi2: Feature Selection and Discretization of Numeric Attributes", 1995, pp. 388-388, http://dx.doi.org/10.1109/TAI.1995.479783.
  • López Y., Andra N., Miguel G., , Quintana, Nicolás., Silva, Augusto, "Computer Aided Diagnosis System to Detect Breast Cancer Pathological Lesions", in Progress in Pattern Recognition, Image Analysis and Applications. vol. Volume 5197/2008, ed: Springer Berlin/ Heidelberg, 2008, pp. 453-460, http://dx.doi.org/10.1007/978-3-540-85920-8_56.
  • López Y., Andra N., Miguel G., Augusto S., "Breast Cancer Diagnosis Based on a Suitable Combination of Deformable Models and Artificial Neural Networks Techniques", in Progress in Pattern Recognition, Image Analysis and Applications. vol. Volume 4756/2008, ed: Springer Berlin / Heidelberg, 2008, pp. 803-811, http://dx.doi.org/10.1007/978-3-540-76725-1_83.
  • Mavroforakis M. E., Georgiou H. V., Dimitropoulos N., Cavouras D., and Theodoridis S., "Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers", Artif Intell Med, vol. 37, pp. 145-62, Jun 2006, http://dx.doi.org/10.1016/j.artmed.2006.03.002.
  • Meinel L. A., Stolpen A. H., Berbaum K. S., Fajardo L. L., and Reinhardt J. M., "Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system", Journal of Magnetic Resonance Imaging, vol. 25, pp. 89-95, 2007, http://dx.doi.org/10.1002/jmri.20794.
  • Moura D. and Guevara López M., "An evaluation of image descriptors combined with clinical data for breast cancer diagnosis", International Journal of Computer Assisted Radiology and Surgery, vol. 8, pp. 561-574, Jul 2013, http://dx.doi.org/10.1007/s11548-013-0838-2.
  • Oliveira J. E. de, Machado A. M., Chavez G. C., Lopes A. P., Deserno T. M., and Araujo Ade A., "MammoSys: A contentbased image retrieval system using breast density patterns", Comput Methods Programs Biomed, vol. 99, pp. 289-97, Sep 2010, http://dx.doi.org/10.1016/j.cmpb.2010.01.005.
  • Oliveira J. E., Gueld M. O., Araújo A., Ott B., and Deserno T. M., "Towards a Standard Reference Database for Computer-aided Mammography", in SPIE - Medical Imaging 2008: Computer-Aided Diagnosis, 69151Y, 2008, http://dx.doi.org/10.1117/12.770325.
  • Papadopoulos A., Fotiadis D. I., and Likas A., "Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines", Artificial Intelligence in Medicine, vol. 34, pp. 141-150, Jun 2005, http://dx.doi.org/10.1016/j.artmed.2004.10.001.
  • Pérez N., Guevara M. A., and Silva A., "EVALUATION OF FEATURES SELECTION METHODS FOR BREAST CANCER CLASSIFICATION", Icem15: 15th International Conference on Experimental Mechanics, p. 10, 2012.
  • Pérez N., Guevara M. A., and Silva A., "Improving breast cancer classification with mammography, supported on an appropriate variable selection analysis", in SPIE Medical Imaging, 2013, pp. 867022-867022-14, http://dx.doi.org/10.1117/12.2007912.
  • Pérez N., Guevara M. A., and Silva A., and I. Ramos, "Ensemble features selection method as tool for Breast Cancer classification", Computing and Informatics, 2013, unpublished (under review).
  • Ping Z., Verma B., and Kuldeep K., "A neural-genetic algorithm for feature selection and breast abnormality classification in digital mammography", in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, 2004, pp. 2303-2308 vol.3, http://dx.doi.org/10.1109/IJCNN.2004.1380985.
  • Pisano E. D., Gatsonis C., Hendrick E., Yaffe M., Baum J. K., Acharyya S., et al., "Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening", N Engl J Med, vol. 353, pp. 1773-1783, October 27, 2005, http://dx.doi.org/10.1056/NEJMoa052911.
  • Ramos-Pollan R., Guevara-Lopez M. A., Suarez-Ortega C., Diaz-Herrero G., Franco-Valiente J. M., Rubio-Del-Solar M., et al., "Discovering mammography-based machine learning classifiers for breast cancer diagnosis", J Med Syst, vol. 36, pp. 2259-69, Aug 2012, http://dx.doi.org/10.1007/s10916-011-9693-2.
  • Salama G. I., Abdelhalim M., and Zeid M. A. -e., "Breast Cancer Diagnosis on Three Different Datasets Using Multi-Classifiers", Breast Cancer (WDBC), vol. 32, p. 2, 2012, .
  • Shi J., Sahiner B., Chan H. P., Ge J., Hadjiiski L., Helvie M. A., et al., "Characterization of mammographic masses based on level set segmentation with new image features and patient information", Med Phys, vol. 35, pp. 280-90, Jan 2008.
  • Soltanian-Zadeh H., Rafiee-Rad F., and Pourabdollah-Nejad D S., "Comparison of multiwavelet, wavelet, Haralick, and shape features for microcalcification classification in mammograms", Pattern Recognition, vol. 37, pp. 1973-1986, Oct 2004, http://dx.doi.org/10.1016/j.patcog.2003.03.001.
  • Talavera L., "An Evaluation of Filter and Wrapper Methods for Feature Selection in Categorical Clustering", in Advances in Intelligent Data Analysis VI. vol. 3646, A. F. Famili, J. Kok, J. Peña, A. Siebes, and A. Feelders, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 440-451, http://dx.doi.org/10.1007/11552253_40.
  • Wang S. and Summers R. M., "Machine learning and radiology", Medical Image Analysis, vol. 16, pp. 933-951, 2012, http://dx.doi.org/10.1016/j.media.2012.02.005.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171325111

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.