Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 2 | 597--602
Tytuł artykułu

Inexact Newton matrix-free methods for solving complex biotechnological systems

Warianty tytułu
Języki publikacji
In the article a 3-dimensional filter method for solving optimal control problems of differential-algebraic equations (DAEs) was presented. Direct multiple shooting method, which is appropriate for the control problems of the multistage DAE systems, leads to the large-scale nonlinear programming problems. In the proposed approach the extended Fletcher's filter with three inputs was used. The filter method promotes global convergence without the need to use a penalty function. The first input of the filter denotes the value of the cost function. The second and third inputs come from two types of equality constraints - consistent initial conditions of the DAE system and continuity constraints on the state trajectories. The new algorithm was tested on the optimal control problem of a fed-batch fermentor for penicillin production. The numerical simulations were executed in MATLAB environment using Wroclaw Center for Networking and Supercomputing.(original abstract)
Opis fizyczny
  • Wrocław University of Technology
  • Wrocław University of Technology
  • An H. -B., Mo Z. -Y., Liu X. -P.. 2007. A choice of forcing terms in inexact Newton method. Journal of Computational and Applied Mathematics. 200:47-60,
  • Banga J. R., Balsa-Canto E., Moles C. G., Alonso A. 2005. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology. 117:407-419,
  • Betts J. T.. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition. SIAM, Philadelphia,
  • Biegler L. T. 2010. Nonlinear Programming. Concepts, Algorithms and Applications to Chemical Processes. SIAM, Philadelphia,
  • Biegler L. T., Campbell S., Mehrmann V. 2012. DAEs, Control, and Optimization. Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia,
  • Brenan K. E., Campbell S. L., Petzold L. R. 1996. Numerical Solution of Initial- Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia,
  • Brunet R., Guillen-Gosalbez G., Jimenez L.. 2010. Cleaner design of single-product biotechnological facilities through the integration of process simulation, multiobjective optimization, life cycle assessment, and principal compopnent analysis. Ind. Eng. Chem. Res. 51:410-424,
  • Dembo R. S., Eisenstat S. C., Steihaug T. 1982. Inexact Newton Methods. SIAM Journal on Numerical Analysis. 19:400-408,
  • Dembo R. S., Steihaug T. 1983. Truncated-Newton algorithm for largescale unconstrained optimization. Mathematical Programming. 26:190-212,
  • Diehl M., Bock H. G., Schloder J. P., Findeisen R., Nagy Z., Allgower F. 2002. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control. 12:577-585,
  • Drąg P., Styczeń K. 2012. A Two-Step Approach for Optimal Control of Kinetic Batch Reactor with electroneutrality condition. Przegląd Elektrotechniczny. 6:176-180.
  • Eisenstat S. C., Walker H. F. 1994. Globally convergent inexact Newton methods. SIAM Journal on Optimization. 4:393-422,
  • Eisenstat S. C., Walker H. F. 1996. Choosing the forcing terms in an inexact Newton method. SIAM Journal on Scientific Computing. 17:16-32,
  • Gear C. W. 1971. The simultaneous numerical solution of differentialalgebraic equations. IEEE Transactions on Circuit Theory. 18:89-95,
  • Knoll D. A., Keyes D. E. 2004. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics. 193:357-397,
  • Kwiatkowska M. 2012. Antimicrobial PVC composites. Processing technologies and functional properties of polymer nanomaterials for food packaging : International COST Workshop, Wroclaw, Poland, September 11-12, pp. 40-41.
  • Niu D., Jia M., Wang F., He D. 2013. Optimization of nosiheptide fed-batch fermentation process based on hybrid model. Ind. Eng. Chem.Res. 52:3373-3380,
  • Nocedal J., Wright S. J. 2006. Numerical Optimization. Second Edition. Springer, New York,
  • Petzold L. 1982. Differential/Algebraic Equations are not ODEs. SIAM Journal on Scientific Computing. 3:367-384,
  • Saad Y., Schultz M. H. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7:856-869,
  • Stoner D. L., Poloski A. P., Johnson J. A., Tolle C. R. 2001. Optimization and Control of Dynamic Bioprocesses. Organic Process Research and Development. 5:299-307,
  • Vassiliadis V. S., Sargent R. W. H., Pantelides C. C. 1994. Solution of a Class of Multistage Dynamic Optimization Problems. 1. Problems without Path Constraints. Ind. Eng. Chem. Res. 33:2111-2122,
  • Vetukuri S. R. R., Biegler L .T., Walther A. 2010. An inexact trust-region algorithm for the optimization of periodic adsorption processes. Ind. Eng. Chem. Res. 49:12004-12013,
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.