PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 2 | 553--560
Tytuł artykułu

Accuracy Evaluation of Classical Integer Order Based and Direct Non-integer Order Numerical Algorithms of Non-integer Order Derivatives and Integrals Computations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the authors evaluate in context of numerical calculations accuracy classical integer order and direct non-integer based order numerical algorithms of non-integer orders derivatives and integrals computations. Classical integer order based algorithm involves integer and fractional order differentiation and integration operators concatenation to obtain non-integer order. Riemann-Liouville and Caputo formulas are applied to obtain directly derivatives and integrals of non-integer orders. The following accuracy comparison analysis enables to answer the question, which algorithm of the two is burdened with lower computational error. The accuracy is estimated applying non-integer order derivatives and integrals computational formulas of some elementary functions available in the literature of the subject.(original abstract)
Rocznik
Tom
2
Strony
553--560
Opis fizyczny
Twórcy
  • Lodz University of Technology, Poland
  • Lodz University of Technology, Poland
Bibliografia
  • Baleanu D., Diethelm K., Scalas E., and Trujillo J. J., "Fractional Calculus Models and Numerical Methods," World Scientific Publishing Co.Pte. Ltd., Singapore, 2012.
  • Brzeziński D. W. and Ostalczyk P., "Evaluation of Efficient Methods of Fractional Order Derivatives and Integrals Numerical Calculations", in Proceedings of the XIV Conference on System Modelling and Control, September 23-24 2013, Łódz, Poland, 2013.
  • Brzeziński D. W. and Ostalczyk P., "High-accuracy Numerical Integration Methods for Fractional Order Derivatives and Integrals Computations", After reviews, awaits publication in Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 4, 2014.
  • Burden R. L., Faires J. D., "Numerical Analysis", 5 th. Ed., Brooks/Cole Cengage Learning, Boston, 2003.
  • C++ wrapper for the GNU Multiple Precision Floating-Point Reliable Library, http://www.holoborodko.com/pavel/mpfr/.
  • Ghazi K. R., Lefevre V., Theveny P. and Zimmermann P., "Why and how to use arbitrary precision" IEEE Computer Society, vol.12, nr 3, 2010, DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.73.
  • Gorenflo R. and Mainardi F., "Fractional Calculus: Integral and Differential Equations of Fractional Order", in Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien and New York, 1997.
  • Hjort-Jensen M., "Computational Physics", University of Oslo, 2009.
  • Kilbas A. A., Srivastava H. M., Trujillo J. J., "Theory and Applications of Fractional Differential Equations", North Holland Mathematics Studies 204, Elsevier, 2006.
  • Krommer R. A., Ueberhuber Ch. W., "Computational Integration", SIAM, Philadelphia, 1986.
  • Kythe P. K., Schäferkotter M. R., "Handbook of Computational Methods For Integration", Chapman & Hall/CRC, 2005.
  • Miller K. S. and Ross B., "An Introduction To The Fractional Calculus and Fractional Differential Equations", John Willey and Sons INC., New York,NY, 1993.
  • Mori M., "Discovery of The Double Exponential Transformation and Its Developments", publ. RIMS, Kyoto Univ., 41, pp. 897-935, 2005.
  • Muller J. M., Brisebarre N., De Dinechin F., Jeannerod C. P., Lefevre V., Melquiond G., Revol N., Stehle D., and Torres D. S., "Handbook of Floating-Point Arithmetic", Birkhauser Boston, New York,NY, 2010.
  • Oldham K. B., Spanier J., "The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order", Academic Press, 1974.
  • Ostalczyk P., Zarys rachunku ró˙zniczkowego i całkowego ułamkowych rze¸dów, Komitet Automatyki i Robotyki Polskiej Akademii Nauk, Wydawnictwo Politechniki Łódzkiej, Łód´z, Poland, 2008.
  • Podlubny I., Fractional Differential Equations, Academic Press, San Diego, CA, 1999.
  • Schwartz C., "Numerical Integration of Analytic Functions", in Journal of Computational Physics, vol. 4, pp. 19-29, 1969.
  • Stroud A. H., Secrest D., "Gaussian Quadrature Formulas", Prentice-Hall, Englewood Cliffs, NJ., 1966.
  • Takahasi H., Quadrature Formulas Obtained by Variable Transformation, Numerische Mathematik, nr 21, 1973.
  • The GNU Multiple Precision Arithmetic Library, https://gmplib.org/.
  • The GNU Multiple Precision Floating-Point Reliable Library, https://mpfr.org/.
  • Waldvogel J., "Towards A General Error Theory of the Trapezoidal Rule", in Approximation and Computation, pp 267-282, Springer Verlag, W.Gautschi, G.Mastroianni and Th.M.Rassias (Eds.), 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171327111

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.