Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 12 | nr 2 | 309--330
Tytuł artykułu

Estimation of Quadratic Finite, Population Functions Using Calibration

Treść / Zawartość
Warianty tytułu
Języki publikacji
Since the quadratic finite population functions can be expressed as totals over a synthetic population consisting of some ordered pairs of elements of the initial population, the traditional and penalized calibration technique is used to derive some calibrated estimators of the quadratic finite population functions. A linear combination of estimators discussed is considered as well. A comparison of approximate variances of the calibrated estimators is also presented. A simulation study is performed to analyze the empirical properties of the calibrated estimators of the finite population variance and covariance which appear as special cases of the quadratic functions. It is shown also how the calibrated estimators of the population covariance (variance) can be applied in regression estimation of the finite population total. (original abstract)
Opis fizyczny
  • Lithuanian University of Educational Sciences
  • Vilnius University, Lithuania
  • Deville, J.C. and Särndal, C. E., 1992. Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, pp.376-382.
  • Farrell, P. and Singh, S., 2002. Penalized chi square distance function in survey sampling. ASA Proceedings, pp.963-968.
  • Guggemos, F. and Tille, Y., 2010. Penalized calibration in survey sampling: Design-based estimation assisted by mixed models. Journal of Statistical Planning and Inference, 140, pp.3199- 3212.
  • Plikusas, A. and Pumputis, D., 2007. Calibrated estimators of the population covariance. Acta Applicandae Mathematicae, 97, pp.177- 187.
  • Plikusas, A. and Pumputis, D., 2010. Estimation of the finite population covariance using calibration. Nonlinear Analysis: Modelling and Control, 15(3), pp.325-340.
  • Särndal, C.E., 2007. The calibration approach in survey theory and practice. Survey Methodology, 33(2), pp.99-119.
  • Särndal, C.E. Swensson, B. and Wretman, J., 1992. Model Assisted Survey Sampling. New York: Springer-Verlag.
  • Singh, S., 2003. On Farrell and Singh's penalized chi square distance functions in survey sampling. SСС Proceedings, pp.173-178.
  • Singh, S. Horn, S. Chowdhury, S. and Yu, F., 1999. Calibration of the estimators of variance. Austral. & New Zealand J. Statist., 41(2), pp. 199-212.
  • Sitter, R.R. and Wu, C., 2002. Efficient estimation of quadratic finite population functions in the presence of auxiliary information. Journal of the American Statistical Association, 97(458), pp.535-543.
  • Yates, F. and Grundy, P., 1953. Selection without replacement from within strata with probability proportional to size. Journal of the Royal Statistical Society, 15(2), pp.253-261.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.