Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 42 | nr 3 | 639--666
Tytuł artykułu

Stiffness Control of Robot Manipulators in the Operational Space using Fuzzy Mapping of Dynamic Functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
In this paper a stiffness control strategy based on the fuzzy mapped nonlinear terms of the robot manipulator dynamic model is proposed. The proposed stiffness controller is evaluated on a research robot manipulator performing a task in the operational space. Tests attempted to achieve fast motion with reasonable accuracy associated with lower computational load compared to the non-fuzzy approach. The stability analysis is presented to conclude about the mapping error influence and to obtain precondition criteria for the gains adjustment to face the trajectory tracking problem. Simulation results that supported the implementation are presented, followed by experiments and results obtained. These tests are conducted on a robot manipulator with SCARA configuration to illustrate the feasibility of this strategy. (original abstract)
Opis fizyczny
  • Universidade Federal de Santa Catarina, Brazil
  • Universidade Federal de Santa Catarina, Brazil
  • Universidade Federal de Santa Catarina, Brazil; Universidade Estadual de Maringá, Brazil
  • Universidade Federal de Santa Catarina, Brazil
  • Brega, R. (1998) A real-time operating system designed for predictability and run-time safety. Inst. of Robotics, Swiss Federal Institute of Technology.
  • Garcia, A., De Pieri, E.R. and Guenther, 4. (2002) Experimental study applied to an industrial robot by using variable structure controllers and friction compensation. Journal of the Brazilian Society of Mechanical Sciences, 24,4, 302-308.
  • Hüipi, R. and Gruener, G. (2001) Software documentation for the SCARA robot Inter. Institute of Robotics, Swiss Federal Institute of Technology.
  • Khalil, W. and Dombre, E. (2004) Modeling, Identification and Control of Robots. 1st ed., Butterworth-Heinemann, London, UK.
  • Lewis, F.L., Dawson, D.M. and Abdallah, C.T. (2004) Robot Manipulator Control Theory and Practice. 2nd ed., Marcel Dekker, NY, USA.
  • Lilly, J.H. (2010) Fuzzy Control and Identification. 1st ed., John Wiley and Sons, NJ, USA.
  • Mamdani, E.H. (1974) Application of fuzzy algorithms for control of simple dynamic plant. Procedings of IEEE, 121,12, 1585-1588.
  • Matlab (2012) Fuzzy Logic Toolbox Users Guide R2012a Matlab R. Technical report. The MathWorks, Inc.
  • Mendes, M.F., Kraus, Jr,W.and De Pieri, E.R. (2002) Variable structure position control of an industrial robotic manipulator. Journal of the Brazilian Society of Mechanical Sciences, 24, 169-176.
  • Natale, C. (2010) Interaction Control of Robot Manipulators: Six-Degreesof- Freedom Tasks. 1st ed., Springer, NJ, USA.
  • Nikitin, E. (1998) Into the Realm of Oberon: An Introduction to Programming and the Oberon-2 Programming Language. 1st ed., Springer, NY, USA.
  • Passold, F. (2009) Applying RBF neural nets for position control of an Inter SCARA robot. International Journal of Computers, Communications and Control, 4,2, 148-157.
  • Piegat, A. (2010) Fuzzy Modeling and Control. 1st ed., Springer, NY, USA.
  • Reiser, M. (1991) The Oberon System: User Guide and Programmer's Manual, 1st ed., Addison-Wesley, NY, USA.
  • Reiser, M. and Wirth, N. (1992) Programming in Oberon: steps Beyond Pascal and Modula. Addison-Wesley ACM Press, NY, USA.
  • Sciavicco, L. and Siciliano, B. (2009) Modelling and Control of Robot Manipulators. 2nd ed., Springer, London.
  • Siciliano, B. and Khatib, O. (2008) Springer Handbook of Robotics. Springer, Berlin, Heidelberg.
  • Siciliano, B., Sciavicco, L., Villani, L. and Oriolo, G. (2011) Robotics: Modelling, Planning and Control. 1st ed., Springer, London.
  • Simulink (2012) Simulink R Getting Started Guide R2012a Matlab R /Simulink R. Technical report. The MathWorks, Inc.
  • Slotine, J.J.E. and Li, W. (1987) On the adaptative control of robot manipulators. Int. J. Rob. Res., 6, 49-59.
  • Slotine, J.J.E. and Li, W. (2004) Applied Nonlinear Control. China Machine Press, Beijing.
  • Takagi, T. and Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15,(1), 116-132.
  • Tanaka, K. and Wang, H.O. (2001) Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, NY, USA.
  • Tischler, N. (2000) Experimental Investigation of Stiffness Control for a Robotic Manipulator. University of Toronto.
  • Vargas, F.J.T. (2005) Analysis and synthesis of force-position controllers of robot manipulators: theoretical and experimental aspects. Ph.D. thesis, Federal University of Santa Catarina.
  • Vargas, F.J.T., De Pieri, E.R. and Castelan, E.B. (2004) Identification and friction compensation for an industrial robot using two degrees of freedom controllers. In: Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision. IEEE, 1146-1151.
  • Weihmann, L. (1999) Description, installation, programming and operation of a SCARA type robot manipulator. Master's thesis, Federal University of Santa Catarina.
  • Wirth, N. and Gutnecht, J. (1992) Project Oberon - the Design of an Operating System and Compiler. Addison-Wesley ACM Press, NY.
  • Yu, B (2000) Modeling, control design and mechatronic implementation of constrained robots for surface finishing applications. Ph.D. thesis, Oklahoma State University.
  • Zadeh, L.A. (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics, SMC-3, 1, 28-44.
  • Zhang, H. and Liu, D. (2008) Fuzzy Modeling and Fuzzy Control, 1st ed., Springer, NY, USA.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.