Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 3 | 21--28
Tytuł artykułu

The Laboratory of Mathematics in Primary School: a Practical Approach for Understanding and Learning

Treść / Zawartość
Warianty tytułu
Języki publikacji
The skills of mathematical nature are currently necessary and fundamental to properly understand and adequately use the increasing amount of scientific and technological knowledge of everyday life. In this work we introduce interesting results of current research about the importance of the connection between the natural intuitive mathematics and the "scholastic mathematics", putting it on a motivating and meaningful basis for the students already by the first year of primary school. To do this, a didactics of laboratory is useful, i.e. a practical approach for better understanding and using the formal approach. Through the mathematics laboratory it is possible to create activities, which support the transition from intuitive notions and early elementary operational levels to more advanced forms of thought. The laboratory of mathematics is understood both as physical place and as a moment in which the child is active, discusses and argues their own choices, does experimentation and learns how to collect data and to compare them with the models. In conclusion some examples of mathematics laboratory activities for the first primary class are also given. (original abstract)
Opis fizyczny
  • Free University of Bolzano-Bozen, Viale Ratisbona 16, 39042 Bressanone-Brixen, Italy
  • P. Di Sia, Fondamenti di Matematica e Didattica I, Aracne, Roma (2013), ISBN 978-88-548-5889-3, 214 pp.
  • P. Di Sia, Elementi di Didattica della Matematica I - Laboratorio, Aracne, Roma (2013), ISBN 978-88-548-6040-7, 108 pp.
  • P. Di Sia, Fondamenti di Matematica e Didattica II, Aracne, Roma (2014), ISBN 978-88-548-7108-3, 344 pp.
  • P. Perrenoud, Dieci nuove competenze per insegnare. Invito al viaggio, Anicia, Roma (2002).
  • G. Polya, How to solve it: A new aspect of mathematical method, Princeton University Press, Princeton (1973).
  • R. (Robert) Burke Johnson, L. B. Christensen, Educational Research: Quantitative, Qualitative, and Mixed Approaches, SAGE Publications, USA, 5th Ed. (2013).
  • 431a-8e1c-e281acec4ab9/indicazioni_nazionali_bozza_pubblica.pdf
  • B. Marinas, M. A. Clements, Understanding the problem: A prerequisite to problem solving in mathematics, Journal for Research in Science and Mathematics Education in Southeast Asia 13(1) (1990).
  • J. Bascones, V. Novak, J. D. Novak, Alternative instructional systems and the development of problem-solving skills in physics, European Journal of Science Education 7 (3) (1985).
  • H. Singer and D. Donlan, Active Comprehension: Problem-Solving Schema with Question Generation for Comprehension of Complex Short Stories, Reading Research Quarterly 17(2) (1982).
  • D. Ausubel, J. Novak, H. Hanesian, Educational Psychology: A Cognitive View, Holt, Rinehart & Winston, New York, 2nd Ed. (1978).
  • E. von Glasersfeld, The radical constructivist view of science, Foundation of Science, 6 (2001).
  • M. Walshaw (Ed.), Unpacking Pedagogy: New Perspectives for Mathematics Classrooms, International Perspectives on Mathematics Education: Cogniti, Information Age Publishing, USA (2010).
  • J. A. Van de Walle, K. S. Karp, J. M. Bay-Williams, Elementary and Middle School Mathematics: Teaching Developmentally, Teaching Student-Centered Mathematics Series, Pearson, USA, 8th Ed. (2012).
  • T. L. Contant, J. E. Bass, A. A. Carin, Teaching Science Through Inquiry and Investigation, Pearson, USA (2014).
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.