PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | nr 146 | 82
Tytuł artykułu

Hydrogenase from Megasphaera elsdenii

Autorzy
Warianty tytułu
Hydrogenase from Megasphaera elsdenii
Języki publikacji
EN
Abstrakty
EN
Hydrogenases are enzymes that catalyze the reversible oxidation of molecular hydrogen. In the first chapter of this thesis I present biochemical and spectroscopic properties of these enzymes. When isolated from different microorganisms, and even different strains, hydrogenases diverge in molecular composition, specific activity in H2 production and H2 oxidation, electron carrier specificity, sensitivity to inactivation by oxygen. Their only common feature is that they are iron-sulfur proteins. Most of hydrogenases contain nickel in the catalytic center and a few of them are known that lack nickel and contain iron as the only metallic element. In the latter group three hydrogenases appear to form a small subgroup of closely related entities. These are enzymes from Clostridium pasteurianum, Desulfovibrio vulgaris and Megasphaera elsdenii. In the second chapter of this thesis I present my data on the hydrogenase from Megasphaera elsdenii. I have purified this hydrogenase to homogeneity using an FPLC procedure as the final step. The protein gives a single band in SDS/PAGE with an apparent molecular mass of 57-59 kDa. I have proved that there is no second hydrogenase activity in the soluble fraction of M. elsdenii what has been suggested in literature. I compared the hydrodynamics of the hydrogenase from Megasphaera elsdenii to the two-subunit Fe hydrogenase from Desulfovibrio vulgaris (Hildenborough) in the analytical ultracentrifuge using the absorption of the intrinsic iron sulfur clusters as the monitor. Sedimentation-velocity experiments indicate the M. elsdeniienzyme to be essentially globular, while the D. vulgaris enzyme has a less symmetric shape. From sedimentation equilibrium measurements under different conditions I calculated an enzyme average molecular mass of 58 kDa (M. elsdenii) and 54 kDa (D. vulgaris). Pure, maximally active M. elsdenii hydrogenase has A405/A280 ratio equal to 0,36 and a specific H2-production activity of 400 μmol H2 • min-1 • (mg protein) -1 at 30°C and pH 8.0. According to my data the enzyme contains some 13-18 iron and acid-labile sulfur ions per 58-kDa monomer. Eight of these Fe-S are present as two electron-transferring ferredoxin-like cubanes as indicated by pH-dependent EPR spectroscopy on the H2-reduced enzyme. In the (re)oxidized state the remainder iron gives rise to a novel single S = 1/2 EPR signal. This signal is probably associated with the enzyme active site. Hydrogen-production activity, content of remainder iron and intensity of EPR signal of reoxidized enzyme are mutually correlated. The results of my study lead to the conclusion that purified hydrogenase appears to exist as a mixture of fully active holoenzyme and inactive protein still carrying the two cubanes but deficient in active site iron. Using cyclic voltammetry I investigated the electron transfer kinetics between the hydrogenase from Megasphaera elsdenii and two electron carriers. The second-order rate constants for electron transfer between the enzyme and rubredoxin and ferredoxin from Megasphaera elsdenii are 1.23 • 106 and 3.9 • 106 M-1 s-1, respectively. Thus, both electron carriers show a very efficient electron transfer what suggests that not only ferredoxin but also rubredoxin is a natural electron carrier for the hydrogenase from Megasphaera elsdenii. (original abstract)
Hydrogenazy są to enzymy katalizujące odwracalny proces utleniania wodoru. W pierwszym rozdziale swojej pracy przedstawiłem charakterystykę biochemiczną i spektroskopową tych enzymów. Hydrogenazy izolowane z różnych mikroorganizmów, a nawet różnych szczepów tych samych mikroorganizmów wykazują odmienną budowę, aktywność właściwą wyrażaną zarówno jako szybkość wytwarzania wodoru jak i szybkość jego utleniania, specyficzność w stosunku do nośnika elektronów, wrażliwość na działanie tlenu. Jedyną wspólną cechą hydrogenaz jest to, że zawierają one skupiska żelazowo-siarkowe. Poza tym w skład centrum katalitycznego większości hydrogenaz wchodzi nikiel, a tylko niewielka ich część zawiera żelazo jako jedyny metal. Do tej ostatniej grupy zalicza się m.in. trzy hydrogenazy o bardzo zbliżonych właściwościach, pochodzące z Desulfovibrio vulgaris, Clostridium pasteurianum i Megasphaera elsdenii. W II rozdziale pracy przedstawiłem wyniki swoich badań nad hydrogenazą z Megasphaera elsdenii. Enzym ten oczyściłem do stanu jednorodnego przy zastosowaniu w ostatnim etapie chromatografii FPLC. Otrzymane białko enzymatyczne w procesie elektroforezy na żelu poliakryloamidowym w obecności siarczanu dodecylu pojawia się jako pojedyncze pasmo o masie cząsteczkowej 57-59 kDa. W swojej pracy przedstawiłem dowody na to, że rozpuszczalna frakcja z komórek bakterii M. elsdenii nie zawiera drugiej hydrogenazy, jak to sugerowano w literaturze. Przy pomocy wirówki analityczne j porównałem właściwości hydrodynamiczne hydrogenazy z M. elsdenii i hydrogenazy z D. vulgaris (Hildenborough) złożonej z dwóch podjednostek. Szybkość przesuwania granicy faz w ultrawirówce była rejestrowana przez pomiar absorpcji wywołanej obecnością w cząsteczkach tych enzymów skupisk żelazowo-siarkowych. Pomiary szybkości sedymentacji wykazały, że enzym z M. elsdenii ma prawdopodobnie kształt globularny, podczas gdy cząsteczka enzymu z D. vulgaris jest mniej symetryczna. Masa cząsteczkowa hydrogenazy z M. elsdenii wyznaczona w pomiarach równowagi sedymentacyjnej przeprowadzonych w różnych warunkach wynosi 58 kDa, zaś hydrogenazy z D. vulgaris 54 kDa. Oczyszczona hydrogenaza z M. elsdenii o maksymalnej aktywności charakteryzuje się stosunkiem absorbancji A405/A280 równym 0,36 oraz aktywnością właściwą wyrażoną w szybkości wytwarzania wodoru równą 400 µmoli H2 • min-1 • (mg białka)-1 w temp. 30° C i pH 8,0. Stwierdziłem, że enzym zawiera 13-18 atomów żelaza i siarki w monomerycznej cząsteczce o masie 58 kDa. Badanie przy pomocy spektroskopii elektronowego rezonansu paramagnetycznego enzymu w formie zredukowanej wodorem doprowadziło do wniosku, że 8 jonów żelaza wchodzi w skład dwóch skupisk żelazowo-siarkowych zdolnych do przenoszenia 2 elektronów. Skupiska te, podobnie jak w bakteryjnej ferredoksynie mają kształt regularnych sześcianów zawierających po 4 jony żelaza i siarki. Utlenienie enzymu prowadzi do powstania nowego sygnału EPR charakterystycznego dla układu o S = 1/2 pochodzącego prawdopodobnie od pozostałych jonów żelaza wchodzących w skład aktywnego centrum enzymu. Szybkość wytwarzania wodoru, zawartość żelaza oraz intensywność sygnału EPR enzymu utlenionego są wyraźnie skorelowane. Wyniki moich badań wskazują na to, że oczyszczona hydrogenaza istnieje w postaci mieszaniny w pełni aktywnego holoenzymu i białka nieaktywnego. To ostatnie posiada nadal w swojej cząsteczce dwa skupiska żelazowo-siarkowe w postaci sześcianów, lecz jest pozbawione żelaza wchodzącego w skład centrum aktywnego. Zbadałem również kinetykę reakcji przenoszenia elektronu między hydrogenazą a dwoma nośnikami elektronów. Przy pomocy cyklicznej woltametrii wyznaczyłem stałe szybkości reakcji drugiego rzędu zachodzącej między enzymem a ferredoksyną i rubredoksyną z M. elsdenii. Wynoszą one 3,9 • 106 M-1 • s-1 dla ferredoksyny i 1,23 • 106 M-1 • s-1 dla rubredoksyny. Z tych danych wynika, że szybkość przenoszenia elektronu z udziałem tych nośników jest bardzo wysoka. Sugeruje to, że nie tylko ferredoksyna, ale także rubredoksyna jest naturalnym nośnikiem elektronów dla hydrogenazy z M. elsdenii. (abstrakt oryginalny)
Twórcy
Bibliografia
  • Adams, M.W.W., Mortenson, L.E., and Chen, J.S. (1981) Hydrogenase. Biochim. Biophys. Acta 594, 105-176.
  • Adams, M.W.W. and Mortenson, L.E. (1984) The physical and catalytic properties of hydrogenase II from Clostridium pasteurianum. A comparison with hydrogenase I. Biochim. Biophys. Acta 766, 51-61.
  • Adams, M.W.W. and Mortenson, L.E. (1984a) The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. J. Biol. Chem. 259, 7045-7055.
  • Adams, M.W.W., Johnson, M.K., Zambrano, I.C., and Mortenson, L.E. (1986) On the novel Inactivating iron-sulfur center of the "Fe-only" hydrogenases. Biochimie 68, 35-41.
  • Adams, M.W.W. (1987) The mechanism of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum. J. Biol. Chem. 262, 15054-15061.
  • Adams, M.W.W., Eccleston, E., and Howard, J.B. (1989) Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum. Proc. Natl. Acad. Sci. USA 86, 4932-4936.
  • Adams, M.W.W. (1990) The structure and mechanism of iron-hydrogenases. Biochim. Biophys. Acta 1020, 115-145.
  • Albracht, S.P.J. (1993) Intimate relationships of the large and the small subunits of all nickel hydrogenases with two nuclear-encoded subunits of mitochondrial NADH:ubiquinone oxidoreductase. Biochim. Biophys. Acta 1144, 221-224.
  • Albracht, S.P.J. (1994) Nickel hydrogenases: in search of the active site. Biochim. Biophys. Acta 1188, 167-204.
  • Albracht, S.P.J., Van der Zwaan, J.W., and Fontijn, R.D. (1984) EPR spectrum at 4.9 and 35 GHz of hydrogenase from Chromatium vinosum. Direct evidence for spin-spin interaction between Ni(III) and the iron-sulfur cluster. Biochim. Biophys. Acta 766, 245-248.
  • Arendsen, AA., Veenhuizen, P.T.M., and Hagen, W.R. (1994) On the soluble hydrogenases from Desulfovibrio vulgaris (Hildenborough) and Pyrococcus furiosus. IV Intern. Conf. on Molecular Biology of Hydrogenases. Noordwijkerhout, the Netherlands (Abstracts, p.5).
  • Armstrong, FA., Hill, H.A.O., and Walton, N.J. (1986) Reactions of electron-transfer proteins on electrodes. Quat. Rev. Biophys. 18, 261-322.
  • Armstrong, FA., Hill, H.A.O. and Walton, N.J. (1982) Direct electrochemical oxidation of Clostridium pasteurianum ferredoxin. Identification of facile electron-transfer processes relevant to cluster oxidation. FEBS Lett. 150, 214-218.
  • Arp, D. (1985) Rhizobium japonicum hydrogenase: Purification to homogeneity from Soybean Nodules, and molecular characterization. Arch. Biochem. Biophys. 237, 504-512.
  • Baldwin, R.L. and Milligan, L.P. (1964) Electron transport in Peptostreptococcus elsdenii. Biochim. Biophys. Acta 92, 421-432.
  • Barondeau, D.P., Roberts, L.M., and Lindahl, P.A. (1994) Stability of NiC and oxidative titration of Desulfovibrio gigas hydrogenase monitored by EPR and electronic absorption spectroscopies. J. Am. Chem. Soc. 116, 3442-3448.
  • Bartha, R. and Ordal, E.J. (1965) Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains. J. Bacteriol. 89, 1015-1019.
  • Bensadoun, R.L. and Milligan, L.P. (1964) Assay of proteins in the presence of interfering substances. Anal. Biochem. 70, 241-250.
  • van Berkel-Arts, A., Dekker, M., van Dijk, C., Grande, H.J., Hagen, W.R., Hilhorst, R., Kruse-Wolters, K.M., Laane, C., and Veeger, C. (1986) Application of hydrogenase in biotechnological conversion. Biochimie 68, 201-209.
  • Bonomi, F., Pagani, S., and Kurtz Jr., D.M. (1985) Enzymic synthesis of the 4Fe-4S clusters of Clostridium pasteurianum ferredoxin. Eur. J. Biochem. 148, 67-73.
  • Brumby, P.E., Muller, R.W. and Massey, V. (1965) The content and possible catalytic significance of labile sulfide in some metalloflavoproteins. J. Biol. Chem. 240, 2222-2228.
  • Bryant, F.O. and Adams, M.W.W.,(1989) Characterization of hydrogenase from hyperthermophylic archaebacterium, Pyrococcus furiosus. J. Biol. Chem. 264, 5070-5079.
  • Cammack, R., Hall, D.O. and Rao, K.K. (1985) Hydrogenases: structure and applications in hydrogen production. In: Microbial Gas Metabolism: Mechanistic, Metabolic and Biotechnological Aspects, 75-102. Edited by Poole, R.K. and Dow, C.S. Society for General Microbiology, London, Academic Press Inc.
  • Cammack, R. and Yates, M.G. (1986) From chemistry to legume growth. Nature 319, 182.
  • Cammack, R., Williams, R., Medina, M., Hatchikian, E.C., Howes, B., and Lowe, D.J. (1994) The other protons in hydrogenase - X-band ENDOR studies on the metal centres. TV Intern. Conf on Molecular Biology of Hydrogenases. Noordwijkerhout, the Netherlands (Abstracts, p.20).
  • Cammack, R. (1995) Splitting molecular hydrogen. Nature 373, 556-557.
  • Chen, J.S. and Mortenson, L.E. (1974) Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim. Biophys. Acta 371, 283-298.
  • Chen, M. (1992) Hydrogenase from Chromatium vinosum. Function and reactivity of metal centers. PhD thesis. University of Amsterdam.
  • Cohn, E.J. and Edsall, J.T. (1943) Proteins, amino acids and peptides, p. 372, Princeton, N.J., Van Nostrand-Reinhold.
  • Deckers, H.M., Wilson, F.R., and Voordouw, G. (1990) Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfovibrio vulgaris Miyazaki F. J. Gen. Microbiol. 136, 2021-2028.
  • van Dijk, C., Mayhew, S.G., Grande, H.J., and Veeger, C. (1979) Purification and properties of hydrogenase from Megasphaera elsdenii. Eur. J. Biochem. 102, 317-330.
  • van Dijk, C. (1980) Properties of hydrogenase from Megasphaera elsdenii. PhD thesis Agricultural University Wageningen, The Netherlands.
  • van Dijk, C., Grande, H.J., Mayhew, S.G., and Veeger, C. (1980a) Properties of hydrogenase of Megasphaera elsdenii. Eur. J. Biochem. 107, 251-261.
  • van Dijk, C. and Veeger, C. (1981) The effects of pH and redox potential on the hydrogen production activity on the hydrogenase from Megasphaera elsdenii. Eur. J. Biochem. 114, 209-219.
  • van Dijk, C., Mayhew, S.G., and Veeger, C. (1981a) An analysis of activity determinations in a series coupled redox reactions with special reference to hydrogenase. Eur. J. Biochem. 114, 201-207.
  • van Dijk, C., van Leeuwen, J.W., and Veeger, C. (1982) Electrochemical behaviour of low-potential electron-transferring proteins at the mercury electrode. Bioelectrochem. Bioenerg. 9, 743-759.
  • van Dijk, C., van Eijs, T., van Leeuwen, J.W., and Veeger, C. (1984) Direct electron transfer between a chemically, viologen-modifled glassy-carbon electrode and ferredoxins from spinach and Megasphaera elsdenii. FEBS Lett. 166, 76-80.
  • Doherty, G.M. and Mayhew, S.G. (1992) The hydrogen-tritium exchange activity of Megasphaera elsdenii hydrogenase. Eur. J. Biochem. 205, 117-126.
  • van Dongen, W., Hagen, W., van den Berg, W., and Veeger, C. (1988) Evidence for unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli. FEMS Microbiol. Lett. 50, 5-9.
  • van Dongen, W. (1995) Molecular biology of redox-active metal proteins from Desulfovibrio. In: Sulfate-reducing bacteria, 185-215. Edited by Barton, L.L., New York, Plenum Press.
  • Elsden, S.R., Volcani, B.E., Gilchrist, F.M.C., and Lewis, D. (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J. Bacteriol. 72, 681-684.
  • Enzyme Nomenclature 1992, San Diego, New York, Boston, Academic Press, Inc., pp. 118, 153.
  • Farkas, A., Farkas, L., and Yudkin, J. (1934) The decomposition of sodium formate by bacterium coli in the presensce of heavy water. Proc. R. Soc. B115, 373-379.
  • Fauque, G., Berlier, Y., Czechowski, M.H., Dimon, B., Lespinat, P.A., and LeGall, J. (1987) A proton-deuterium exchange study of three types of Desulfovibrio hydrogenases. J. Ind. Microbiol. 1, 139-147.
  • Fauque, G., Peck Jr., H.D., Moura, J.J.G., Huynh, B.IL, Berlier, Y., DerVartanian, D.V., Teixeira, M., Przybyla, A.E., Lespinat, P.A., Moura, I., and LeGall, J. (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 54, 299-344.
  • Fernandez, V.M. and Ballesteros, A. (1980) Method for anaerobic purification of biochemicals as exemplified by Clostridium pasteunanum hydrogenase purification. Anal. Biochem. 108, 121-125.
  • Fernandez, V.M., Rao, K.K., Fernandez, M.A., and Cammack, R. (1986) Activation and deactivation of the membrane-bound hydrogenase from Desulfovibrio desulfuricans, Norway strain. Biochimie 68, 43-48.
  • Filipiak, M., Hagen, W.R., Grande, H.J., Dunham, W.R., van Berkel-Arts, A., Kruse-Wolters, K.M., and Veeger, C. (1987) Structural and magnetic properties of Fe-hydrogenases reinvestigated. Recl. Trav. Chim. Pays-Bas 106, 230.
  • Filipiak, M., Hagen, W.R., and Veeger, C. (1989) Hydrodynamic, structural and magnetic properties of Megasphaera elsdenii Fe hydrogenase reinvestigated. Eur. J. Biochem. 185, 547-553.
  • Friedrich, B. and Schwartz, E. (1993) Molecular biology of hydrogen utilization in aerobic chemolithotrophs. Ann. Rev. Microbiol 47, 351-383.
  • Fu, W., Drozdzewski, P.M., Morgan, T.V., Mortenson, L.E., Juszczak, A., Adams, M.W.W., He, S.H., Peck Jr., H.D., DerVartanian, D.V., LeGall, J., and Johnson, M.K. (1993) Raman resonance studies of iron-only hydrogenases. Biochemistry 32, 4813-4819.
  • Gast, R., Valk, B.E., Muller, F., Mayhew, S.G., and Veeger, C. (1976) Studies on the binding of FMN by apoflavin from Peptostreptococcus elsdenii. pH and NaCl concentration dependence. Biochim. Biophys. Acta 446, 463-471.
  • Gorwa, M.F., Croux, C., and Soucaille, P. (1994) Cloning, sequencing and inactivation of hydrogenase gene of Clostridium acetobutylicum ATCC824. IV Intern. Conf. on Molecular Biology of Hydrogenases. Noordwijkerhout. The Netherlands (Abstracts, p.52).
  • Graf, E.-G. and Thauer, R.K. (1981) Hydrogenase from Methanobacterium thermoautotrophicum: a nickel - containing enzyme. FEBS Lett., 136, 165-169.
  • Grande, H.J., Dunham, W.R., Averill, B., van Dijk, C., and Sands, R.H. (1983) Electron paramagnetic resonance and other properties of hydrogenases isolated from Desulfovibrio vulgaris (strain Hildenborough) and Megasphaera elsdenii. Eur. J. Biochem. 136, 201-207.
  • Grande, H.J., van Berkel-Arts, A., Bregh, J., van Dijk, C., and Veeger, C. (1983a) Kinetic properties of hydrogenase isolated from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 131, 81-88.
  • Gratzel, M. (1989) Artificial photosynthesis, very efficient visible light energy harvesting and conversion by spectral sensitization of fractal oxide semiconductor films. In: Photoconversion processes for energy and chemicals. Energy for biomass 5. Edited by Hall, D.O., Grassi, G., London and New York, Elsevier Applied Science.
  • Green, J.D.F., Perham, R.N., Ullrich, S.J., and Appella, E. (1992) Conformational studies of the interdomain linker peptides in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J. Biol. Chem. 267, 23484-23488.
  • Hagen, W.R., van Berkel-Arts, A., Kruse-Wolters, K.M., Dunham, W.R., and Veeger, C. (1986) EPR of a novel high-spin component in activated hydrogenase from Desulfovibrio vulgaris (Hildenborough). FEBS Lett. 201. 158-162.
  • Hagen, W.R., van Berkel-Arts, A., Kruse-Wolters, K.M., Voordouw, G., and Veeger, C. (1986a) The iron-sulfur composition of the active site of hydrogenase from Desulfovibrio vulgaris (Hildenborough) deduced from its subunit structure and total iron-sulfur content. FEBS Lett. 203, 59-63.
  • Hagen, W.R. (1987) Probing the Fe/S domain with epr: pandora's box ajar. In: Cytochrome systems, 459-466. Edited by Papa, S., Chance, B., and Ernster, L., Plenum Publishing Corporation.
  • Hagen, W.R., Filipiak, M., Pierik, A.J., and Veeger, C. (1988) Iron hydrogenases of Desulfovibrio vulgaris (Hildenborough) and Megasphaera elsdenii Intern. Symp. on Hydrogenase, Helen, Georgia, USA (Abstracts, p.7).
  • Hagen, W.R. (1989) Direct electron transfer of redox proteins at the bare glassy carbon electrode. Eur. J. Biochem. 182, 523-530. Edited by Hall, D.O., Grassi, G. Elsevier Applied Science, London and New York.
  • Hagen, W.R. (1989a) On the mechanism of electron transfer between proteins and glassy carbon. In: Photoconversion processes for energy and. chemicals. Energy from biomass 5. 286-298.
  • Hahn, D. and Kuck, U. (1994) Biochemical and molecular genetic basis of hydrogenases. Proc. Biochem. 29, 633-644.
  • Haikara, A. (1992) The genera Pectinatus and Megasphaera. In: The prokaryotes. Vol. 2, 2nd Ed., 1997-2004. Edited by Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H., New York, Berlin, Heidelberg, London, Paris, Springer Verlag.
  • Hall, P.O. and Rao, K.K. (1991) Hydrogen as an energy source, Ill Intern. Conf on Molecular Biology of Hydrogenases. Troia. Portugal (Abstracts, p. 2-7).
  • Hallahan, D.L., Fernandez, V.M., Hatchikian, E.G., and Hall, P.O. (1986) Differential inhibition of catalytic sites in Desulfovibrio gigas hydrogenase. Biochimie 68, 49-54.
  • Happe, T., Mosier, B., and Naber, D.J. (1994) Induction, localization and metal content of hydrogenase in the green algae Chlamydomonas reinhardtii Eur. J. Biochem. 222, 769-774.
  • Harker, A.R., Xu, L.S., Hanus, F.J., and Evans, H.J. (1984) Some properties of the nickel containing hydrogenase from chemolithotrophically grown Rhizobium japonicum. J. Bacteriol. 153, 850-856.
  • Haschke, R.H. and Campbell, L.L. (1971) Purification and properties of a hydrogenase from Desulfovibrio vulgaris. J. Bacteriol. 105, 249-258.
  • Hatchikian, E.C., Forget, N., Fernandez, V.M., Williams, R., and Cammack, R. (1992) Further characterization of the [Fe]-hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Eur. J. Biochem. 209, 357-365.
  • Hatchikian, E.C., Traore, A.S., Fernandez, V.M., and Cammack, R. (1990) Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans. Eur. J. Biochem. 187, 635-643.
  • Heering, H.A. and Hagen, W.R. (1995) Complex stereochemistry of flavodoxin at carbon based electrodes results from a combination of direct electron transfer, flavin mediated electron transfer, and comproportionation J. Electroanal. Client., in press.
  • Hilhorst, R., Laane, C., and Veeger, C. (1982) Photosensitized production of hydrogen by hydrogenase in reversed micelles. Proc. Natl. Acad. Sci. USA 79, 3927-3930.
  • Hoberman, H.D. and Rittenberg, D. (1943) Biological catalysis of the exchange reaction between water and hydrogen. J. Biol. Chem. 147, 211-227.
  • Hoogvliet, J.C., Lievense, L.C., van Dijk, C., and Veeger, C. (1988) Electron transfer between the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and viologens. I. Investigations by cyclic voltammetry. Eur. J. Biochem. 174, 273-280.
  • Hoppe-Seyler, F. (1887) Die Methangarung der Essigsaure. Z Phys. Chem. 11, 561-568.
  • Huynh, B.H., Czechowski, M.H., Kruger, H.-J., DerVartanian, D., Peck, H.D. & LeGall, J. (1984) Desulfovibrio vulgaris hydrogenase: A non-heme iron enzyme lacking nickel that exhibits anomalous EPR and Mossbauer spectra. Proc. Natl. Acad. Sci., USA 81, 3728-3732.
  • Huynh, B.H., Patil, D.S., Moura, I., Teixeira, M., Moura, J.J.G., DerVartanian, D.V., Czechowski, M.H., Prickril, B.C., and Peck Jr., H.D. (1987) On the active site of the [NiFe]-hydrogenase from Desulfovibrio gigas J. Biol. Client. 262, 795-809.
  • Juszczak, A., Aono, S., and Adams, M.W.W. (1991) The extremely thermophylic eubacterium Thermatoga maritima contains a novel iron hydrogenase whose cellular activity is dependent upon tungsten. J. Biol. Chem. 266, 13834-13841.
  • Kleijn, J.M. (1987) Interfacial electrochemistry of colloidal ruthenium dioxide and catalysis of the photochemical generation of hydrogen from water. PhD thesis. Agricultural University Wageningen, the Netherlands.
  • Klibanov, M. (1983) Biotechnological potential of the enzyme hydrogenase. Proc. Biochem. August, 13-23.
  • Klibanov, M., Kaplan, N.O., and Kamen, M.D. (1979) Chelating agent protect hydrogenase against oxygen inactivation. Biochim. Biophys. Acta 547, 411-416.
  • Laemmli, U.K. (1970) Cleavage and structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  • Ladd, J.N. and Walker, D.J. (1959) The fermentation of lactate and acrylate by the rumen microorganism LG. Biochem. J. 71, 364-373.
  • Leeuwen, J.W., van Dijk, C., and Veeger, C. (1983) A pulse radiolysis study of the reduction of flavodoxin from Megasphaera elsdenii by viologen radicals. A conformational change as a possible regulating mechanism. Eur. J. Biochem. 135, 601-607.
  • LeGall, J., Payne, W.J., Chen, L., Liu, M.Y., and Xavier, A.V. (1994) Localization and specifity of cytochromes and other electron transfer proteins from sulfate reducing bacteria. Biochimie 76, 655-665.
  • Lissolo, T., Choi, E.S., LeGall, J., and Peck Jr., H.D. (1986) The presence of multiple intrinsic membrane nickel containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). Biochem. Biophys. Res. Commun. 2, 701-708.
  • Macor, K.A., Czernuszewicz, R.S., Adams, M.W.W., and Spiro, T.G. (1987) An investigation of hydrogenase I and hydrogenase II from Clostridium pasteurianum by Resonance Raman Spectroscopy. Evidence for a [2Fe-2S] cluster in hydrogenase I. J. Biol. Chem. 262, 9545-9547.
  • Malki, S., Deluca, G., Dermoun, Z., and Belaich, J.P. (1994) NADP reducing iron-only hydrogenase mutants of Desulfovibrio fructosovorans show metabolic changes. IV Intern. Conf. on Molecular Biology of Hydrogenases. Noordwijkerhout. The Netherlands (Abstracts, p.92).
  • Malki, S., Saimmaime, I., De Luca, G., Rousset, M., Dermoun, Z., Belaich, J.-P. (1995) Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J. Bacteriol.177, 2628-2636.
  • Massey, V. (1957) Studies on succinic dehydrogenase. VII. Valency state of the iron in beef heart succinic dehydrogenase, J. Biol. Chem. 229, 763-770.
  • Mattevi, A., de Kok, A. and Perham, R.N. (1992) The pyruvate dehydrogenase multienzyme complex. Curr. Opin. Struct. Biol. 2, 877-887.
  • Mayhew, S.G., van Arem, E.J.F., Strating, M.J.J., and Wassink, J.H. (1976) The effects of pH on dithionite-reduced flavodoxin from Peptostreptococcus elsdenii and the use of apoflavodoxin to determine and purify FMN. In: Flavins and Flavoproteins, 411-421. Edited by Singer, T.P., Amsterdam, Elsevier Scientific Publishing Company.
  • Mayhew, S.G., van Dijk, C., and van der Westen, H.H. (1978) Properties of hydrogenases from anaerobic bacteria Megasphaera elsdenii and Desulfovibrio vulgaris (Hildenborough). In: Hydrogenases, their catalytic activity, structure and function, Edited by Schlegel, H.G. and Schneider, K., Gottingen, Verlag E. Goltze.
  • Mayhew, S.G. (1978) The redox potential of dithionite and SO2 - from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur. J. Biochem. 85, 535-547.
  • Menon, N., Peck Jr., H.D., LeGall, J., and Przybyla, A.E. (1987) Cloning and sequencing of the gene encoding the large and small subunit of the periplasmic [NiFeSe] hydrogenase of Desulfovibrio baculatus. J. Bacterial. 169, 5401-5407.
  • Meyer, J. and Gagnon, J. (1991) Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry 30, 9697-9704.
  • van Mierlo, C. (1990) Proton NMR studies on Megasphaera elsdenii flavodoxin: structure elucidation by 2D-NMR and implications. PhD thesis Agricultural University Wageningen, The Netherlands.
  • Miura, Y. (1995) Hydrogen production by biophotolysis based on microalgal photosynthesis. Proc. Biochem. 30, 1-7.
  • Miura, Y., Yagi. K., Shoga, M., and Miyamoto, K. (1982) Hydrogen production by a green algae, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechnol. Bioeng. 24, 1555-1563.
  • Moonen, C.T.W. and Muller, F. (1983) On the mobility of riboflavin 5'-phosphate in Megasphaera elsdenii flavodoxin as studied by 13C-nuclear-magnetic-resonance relaxation. Eur. J. Biochem. 133, 463-470.
  • Morimoto, Y., Tani, T., Okumura, H., Higuchi, Y. & Yasuoka, N. (1991) Effects of amino acid substitution on three-dimensional structure: an X-ray analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 2 A resolution. J. Biochem (Tokyo) 110, 532-540.
  • Moura, J.J.G., Macedo, A.L., Palme, P.N. (1994) Ferredoxins. Meth. in Enzym. 243, 188-202.
  • Mura, G.M., Branduzzi, P., Grandi, G., Park, J.-B., Adams, M.W.W., and Galli, M. (1991) Characterization of Pyrococcus furiosus hydrogenase. Proceedings of the 15th International Congress of Biochemistry, Jerusalem 313.(Abstracts, p.).
  • Mus-Veteau, J. and Guerlesquin, F. (1994) Involvement of histidine residues in the catalytic mechanism of hydrogenases. Biochem. Biophys. Res. Commun. 201, 128-134.
  • Pagani, S., Bonomi, F., and Cerleti, P. (1984) Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. Eur. J. Biochem. 142, 361-366.
  • Park, J.-B., Fan, C., Hoffman, B.M., and Adams, M.W.W. (1991) Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4Fe-4S] cluster in the novel ferredoxin from hyperthermophylic archaebacterium Pyrococcus furiosus. J. Biol. Chem. 266, 19351-19356.
  • Patil, D.S., Czechowski, M.H., Huynh, B.H., LeGall, J., Peck Jr., H.D., and DerVartanian, D.V. (1986) A reversible effect of low carbon monoxide concentrations on the EPR spectra of the periplasmic hydrogenase from Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun. 137, 1086-1093.
  • Patil, D.S. and Huynh, B.H. (1988) A reversible photoconversion between the carbon monoxide induced axial 2.06 and the rhombic 2.10 EPR signals of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Am. Chem. Soc. 110, 8533-8534.
  • Patil, D.S., Moura, J.J.G., He, S.H., Teixeira, M., Prickril, B.C., DerVartanian, D.V., Peck Jr., H.D., LeGall, J., and Huynh, B.H. (1988a) EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Biol. Chem. 263, 18732-18738.
  • Payne, M.J., Chapman, A., and Cammack, R. (1993) Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis. FEBS Lett. 317, 101-104.
  • Pedroni, P., Volpe, A.D., Galli, G., Mura, G.H., Pratesi, C., Grandi, G. (1995) Characterization of the locus encoding the [NiFe]sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases. Micro-biology-UK 141, 449-458.
  • Peel, J.L. (1960) The breakdown of pyruvate by cell-free extracts of the rumen microorganism LC. Biochem. J. 74, 525-541.
  • Pierik, A.J., Hagen, W.R., Redeker, J.S., Wolbert, R.B.G., Boersma, M., Verhagen, M.F.J.M., Grande, H.J., Veeger, C., Mutsaers, P.H.A., Sands, R.H., and Dunham, W.R. (1992) Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 209, 63-72.
  • Pierik, A.J., Wolbert, R.B.G., Mutsaers, P.H.A., Hagen, W.R., and Veeger, C. (1992a) Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 206, 697-704.
  • Pierik, A.J. (1993) Studies on the iron-sulfur clusters of hydrogenase, sulfite reductase, nitrogenase and the prismane proteins. PhD thesis Agricultural University Wageningen, The Netherlands.
  • Pollock, W.B.R., Loutfi, M., Bruschi, M., Rapp-Giles, B.J., Wall, J.D., Voordouw, G. (1991) Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 173, 220-228.
  • Pow, T. and Krasna, A.I. (1979) Photoproduction of hydrogen from water in hydrogenase-containing algae. Arch. Biochem. Biophys. 194, 413-421.
  • Prickril, B.C., Czechowski, M.H., Przybyla, A.E., Peck Jr., H.D., and LeGall, J. (1986) Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris. J. Bacteriol. 167, 722-725.
  • Prickril, B.C., He, S.-H.. Li, C., Menon, N., Choi, E.S., Przybyla, A.E., DerVartanian, D.V., Peck Jr., H.D., Fauque, G., LeGall, J., Teixeira, M., Moura, I., Moura, J.J.G., Patil, D.S., and Huynh, B.H. (1987) Identification of three classes of hydrogenase in the genus Desulfovibrio. Biochem. Biophys. Res. Commun. 49, 369-377.
  • Prickril, B.C., Kurtz, D.M., LeGall, J., Voordouw, G. (1991) Cloning and sequencing of the gene for rubrerytrin from Desulfovibrio vulgaris (Hildenborough). Biochemistry 30,11118-11123.
  • Przybyla, A.E., Robbins, J., Menon, N., and Peck Jr., H.D. (1992) Structure-function relationships among the nickel-containing hydrogenases. FEMS Microbiol. Rev. 88, 109-136.
  • Radford, S.E., Laue, E.D., Perham, R.N., Martin, S.R., and Appella, E. (1989) Conformational flexibility and folding of synthetic peptides representing an interdomain segment of polypeptide chain in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. J. Biol. Chem. 264, 767-775.
  • Ragsdale, S.W. and Ljungdahl, L.G. (1984) Hydrogenase from Acetobacterium woodii. Arch. Microbiol. 139, 361-365.
  • Reeve, J.N. and Beckler, G.S. (1990) Conservation of primary structure in procaryotic hydrogenases. FEMS Microbiol. Rev. 87, 419-424.
  • van Rooijen, G.J.H., Bruschi, M., Voordouw, G. (1989) Cloning and sequencing of the gene encoding cytochrome c553 from Desulfovibrio vulgaris. J. Bacteriol. 171, 3575-3578.
  • Rosenkrans, A.M., Rosen, M.M., and Krasna, A.I. (1983) Effect of oxygen removal on hydrogen photoproduction in algae. Biotechnol. Bioeng. 25, 1897-1904.
  • Rusnak, F.M., Adams, M.W.W., Mortenson, L.E., and Munck, E. (1987) Mossbauer study of Clostridium pasteurianum hydrogenase II: evidence for a novel three iron cluster. J. Biol. Chem. 262, 38-41.
  • Santangelo, J.D., Durre, P., and Woods, D.R. (1995) Characterization and expression of the hydrogenase-encoding gene from Clostridium acetobutylicum P262. Microbiology-UK 141, part I, 171-180.
  • Schindler, F. and Winter, J. (1987) Purification and properties of a soluble, thermophilic hydrogenase of Acetomicrobium flavidum. Biochim. Biophys. Acta 913, 81-88.
  • Schlegel, H.G. and Schmidt, K. (1991) General Microbiology, 6th Ed., Cambridge University Press, pp. 88-89, 248-249, 284-285, 314-315.
  • Sherman, M.B., Orlova, E.V., Smirnova, E.A., Hovmoller, S., and Zorin, N.A. (1991) Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina. J. Bacteriol. 173, 2576-2580.
  • Shiga, K. and Tollin, G. (1976) Studies on the mechanism of electron transfer in flavodoxins. In: Flavins and Flavoproteins, 422-425. Edited by Singer, T.P., Amsterdam, Elsevier Scientific Publishing Company.
  • Smith, E.T. and Adams, M.W.W. (1994) Identification of an unusual paramagnetic species and of three [2Fe-2S] clusters in the iron-only hydrogenase from the hyperthermophylic bacterium Thermatoga maritima. Biochim. Biophys. Acta 1206, 105-112.
  • Smith, M.H. (1970) Molecular weights of proteins and some other materials including sedimentation, diffusion and frictional coefficients and partial specific volumes. In: Handbook of biochemistry, selected data for molecular biology, C3 - C11. Edited by Sober, H.A., the Chemical Rubber Co., Cleveland, OH.
  • Stackebrandt, E., Pohle, H., Kroppenstedl, R., Hippe, Hi, and Woese, C.R. (1985) 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive eubacteria. Arch. Microbiol. 143, 270-276.
  • Stephenson, M. and Stickland, L.H. (1931) Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25, 205-214.
  • Stephenson, M. and Stickland, L.H. (1931a) Hydrogenase: a bacterial enzyme activating molecular hydrogen. II. Reduction of sulphate to sulphide by molecular hydrogen. Biochem. J. 25, 215-220.
  • Stetter, KO., Fiala, G., Huber, R., and Segerer, A. (1990) Hyperthermophylic microorganisms. FEMS Microbiol. Rev. 75, 117-124.
  • Stokkermans, J. (1993) Molecular studies on iron-sulfur proteins in Desulfovibrio. PhD thesis Agricultural University Wageningen, The Netherlands .
  • Stokkermans, J., van Dongen. W., Kaan, A., Van der Berg, W., and Veeger, C. (1989) Hyd C, a gene from Desulfovibrio vulgaris (Hildenborough) encodes a polypeptide homologous with the periplasmic hydrogenase. FEMS Microbiol. Lett. 58, 217-222.
  • Surerus, V.K., Chen, M., van der Zwaan, J.W., Rusnak, F.M., Kolk, M., Duin, E.C., Albracht, S.P.J., and Munck, E. (1994) Further characterization of the spin coupling observed in the oxidized hydrogenase from Chromatium vinosum. A Mossbauer study and multifrequency EPR study. Biochemistry 33, 4980-4993.
  • Teixeira, M., Fauque, G., Moura, I., Lespinat, P.A., Berlier, Y., Prickril, B.C., Peck Jr., H.D., Xavier, A.V., LeGall. J., and Moura, J.J.G. (1987) Nickel - [iron-sulfur] - selenium containing hvdrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties. Eur. J. Biochem. 167, 47-58.
  • Teixeira, M., Moura, I., Fauque, G., Czechowski, M.H., Berlier, Y., Lespinat, P.A., LeGall, J., Xavier, A.V., and Moura, J.J.G. (1986) Redox properties on a nickel - containing hydrogenase isolated from a halophylic sulfate reducer Desulfovibrio salexigens, Biochimie 68, 75-84.
  • Thomson, A.J., George, S.J., Richards, A.J.M., Robinson, A.E., Grande, H.J., Veeger, C., and van Dijk, C. (1985) A study of one of the iron-sulphur clusters in oxidized hydrogenase from Megasphaera elsdenii by magnetic-circular-dichroism spectroscopy. Biochem. J. 227, 333-336.
  • Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T. & Matsubara, H. (1981) X-ray analysis of a [2Fe-2S] ferredoxin from Spirulina flatensis. Main chainfold and location of side chains at 2.5 A resolution. J. Biochem. (Tokyo) 90, 1763-1773.
  • Verhagen, M.F.J.M., Pierik, A.J., Wolbert, R.B.G., Mallee, L.F., Voorhom, W.G.B., and Hagen, W.R. (1994) Axial coordination and reduction potentials of the sixteen hemes in high-molecular-mass cytochrome c from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 225, 311-319.
  • Verhagen, M.F.J.M., Wolbert, R.B.G., and Hagen, W.R. (1994a) Cytochrome m from Desulfovibrio vulgaris (Hildenborough). Electrochemical properties and electron transfer with hydrogenase. Eur. J. Biochem. 221, 821-829.
  • Versieck, J. (1988) Neutron activation analysis. Meth. in Enzym. 158, 267-286.
  • Vignais, P.M. and Toussaint, B. (1994) Molecular biology of membrane-bound H2 uptake hydrogenases. Arch. Microbiol. 161, 1-10.
  • Volbeda, A., Charon, M.H., Piras, C., Hatchikian, E.C., Frey, M., and Fontecilla-Camps, J.C. (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580-587.
  • Voordouw, G., Walker, J.E., and Brenner, S. (1985) Cloning of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and determination of the NH2-terminal sequence. Eur. J. Biochem. 148, 509-514.
  • Voordouw, G. and Brenner, S. (1985) Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 148, 515-520.
  • Voordouw, G. and Brenner, S. (1986) Cloning and sequencing of the gene encoding cytochrome C3 from Desulfovibrio vulgaris (Hildenborough). Eur. J. Biochem. 159, 347-351.
  • Voordouw, G., Kent, H.M., and Postgate, J.R. (1987) Identification of the genes for hydrogenase and cytochrome C3 in Desulfovibrio. Can. J. Microbiol. 33, 1006-1010.
  • Voordouw, G., Hagen, W.R., Kruse-Wolters, K.M., van Berkel-Arts, A.. & Veeger, C. (1987a) Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli. Eur. J. Biochem. 162, 31-36.
  • Voordouw, G., Strang J.D., and Wilson, F.R. (1989) Organisation of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris susp. oxamicus Monticello. J. Bacteriol. 171, 3881-3889.
  • Voordouw, G., Menon, N.K., LeGall, J., Choi, E.S., Peck Jr., H.D., and Przybyla, A.E. (1989a) Analysis and comparison of nucleotide sequence encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J. Bacteriol. 171, 2894-2899.
  • Voordouw, G. (1992) Evolution of hydrogenase genes. Adv. Inorg. Chem. 38, 397-422.
  • Wangt, G., Benecky, M.J., Huynh, B.H., Cline, J.F., Adams, M.W.W., Mortenson, L.E., Hoffman, B.M., and Munck, E. (1984) Mossbauer and electron nuclear double resonance study of oxidized bidirectional hydrogenase from Clostridium pasteurianum W5. J. Biol. Chem. 259, 14328-14331.
  • Weaver, P.F., Lien, S., and Seibert, M. (1980) Photobiological production of hydrogen. Solar Energy 24, 3-45.
  • van der Westen, H.H., Mayhew, S.G., and Veeger, C. (1978) Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. Purification and properties. FEBS Lett. 86, 122-126.
  • Wu, L.-F., Navarro, C., Luthand, G., and Mandraud, M.-A. (1991) Evolution of procaryotic hydrogenases. Ill Intern. Conf. on Molecular Biology of Hydrogenases, Troia, Portugal (Abstracts, p. 28-31).
  • Wu, L.-F. and Mandrand, M.-A. (1993) Microbial hydrogenases: Primary structure, classification, signatures and phylogeny. FEMS Microbiol. Rev. 104, 243-270.
  • Yagi, T. (1970) Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. J. Biochem. 68, 649-657.
  • Yagi, T., Kimura, K., and Inokuchi, H. (1985a) Analysis of the active center of hydrogenase from Desulfovibrio vulgaris Miyazaki by magnetic measurements, J. Biochem. 97, 181-187.
  • Yagi, T. (1994) Monoheme cytochromes. Meth. in Enzym. 243, 203-215.
  • Zambrano, I.C., Kowal, A.T., Adams, M.W.W., Mortenson, L.E. and Johnson, M.K. (1987) MCD and EPR studies on the Fe-hydrogenases from Clostridium pasteurianum. Recl. Trav. Chim. Pays-Bas Belg. 106, 235.
  • Zambrano, J.C., Kowal, A.T., Mortenson, L.E., and Johnson, M.K. (1989) Magnetic circular dichroism and electron paramagnetic resonance studies of hydrogenases I and II from Clostridium pasteurianum. J. Biol. Chem. 264, 20974-20983.
  • Zirngibl, C., van Dongen, W., Schworer, B., Von Bunau, R., and Richter, M. (1992) H2-forming methylene-tetrahydro-methanopterin dehydrogenase, a novel type of hydrogenase. J. Biochem. 208, 511-520.
  • van der Zwaan, J.W., Albracht, S.P.J., Fontijn, R.D., and Slater, E.C. (1985) Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for interaction with hydrogen. FEBS Lett. 179, 271-277.
  • van der Zwaan, J.W., Albracht, S.P.J., Fontijn, R.D., and Roelofs, Y.B.M. (1986) EPR evidence for direct interaction of carbon monoxide with nickel in hydrogenase from Chromatium vinosum. Biochim. Biophys. Acta 872, 208-215.
  • van der Zwaan, J.W. (1987) On the active site of nickel hydrogenases. PhD thesis. University of Amsterdam, the Netherlands.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171350013

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.