PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | nr 30 Internet w społeczeństwie informacyjnym | 221--236
Tytuł artykułu

Redukcja wymiarowości i selekcja cech w zadaniach klasyfikacji i regresji z wykorzystaniem uczenia maszynowego

Autorzy
Treść / Zawartość
Warianty tytułu
The Reduction of Assessments and Features Selection in Tasks of Classification and the Regression with Using Machine Learning
Języki publikacji
PL
Abstrakty
W artykule szczegółowo omówiono zagadnienia związane z wykorzystaniem metod selekcji cech do redukcji wymiarowości. W kolejnych rozdziałach przedstawiono: podstawowe założenia selekcji cech, podział metod wykorzystujących ten proces, wybrane algorytmy selekcji oraz przykład obliczeniowy(fragment tekstu)
EN
Machine learning is being used in tasks of the regression and classification. In the field of classification a multidimensional of classified objects is one of essential problems. Classification is held on the basis of the value of features. These features are reflecting dimensions of the object subjected to the classification. In the article, applied algorithms were introduced selection of features which let reduce a problem "curses of dimensionality". (original abstract)
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
  • Ahmad A., Dey L., A feature selection technique for classificatory analysis, "Pattern Recognition Letters" 2005, nr 26.
  • Chizi B., Maimon O., Dimension Reduction and Feature Selection, w: Data Mining and Knowledge Discovery Handbook, red. O. Maimon, L. Rokach, Springer, Nowy Jork 2010.
  • Cortez P., Cerdeira A., Almeida F., Matos T., Reis J., Modeling wine preferences by data mining from physicochemical properties, "Decision Support Systems" 2009, nr 4.
  • Guyon I., Practical Feature Selection: from Correlation to Causality, w: Mining massive data sets for security: advances in data mining, search, social networks and text mining, and their applications to security, red. F. Fogelman-Soulié, D. Perrotta, J. Piskorski, R. Steinberger, IOS Press, Amsterdam.
  • Hall M.A., Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning, ICML '00 Proceedings of the 17th International Conference on Machine Learning 2000.
  • Hall M.A., Holmes G., Benchmarking Attribute Selection Techniques for Discrete Class Data Mining, "IEEE Transactions on Knowledge and Data Engineering" 2003, nr 3.
  • Hall M.A., Smith L.A., Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper, Proceedings of the 12th International Florida Artificial Intelligence Research Society Conference 1999, s. 235-239.
  • Hand D., Mannila H., Smyth D., Eksploracja danych, WNT, Warszawa 2005. http:// archive.ics.uci.edu/ml/index.html.
  • Kannan S.S., Ramaraj N., A novel hybrid feature selection via Symmetrical Uncerteinty ranking based local memetic search algorithm, "Knowledge-Based Systems" 2010, nr 23.
  • Kira K., Rendell L.A., A Practical Approach to Feature Selection, ML92 Proceedings of the 9th international workshop on Machine learning 1992.
  • Kononenko I., Hong S.J., Attribute Selection for Modelling, "Future Generation Computer Systems" 1997, nr 2-3.
  • Liu H., Setiono R., A Probabilistic Approach to Feature Selection - A Filter Solution, Proceedings of the 13th International Conference on Machine Learning ICML'96.
  • Liu H., Yu L., Motoda H., Feature Extraction, Selection, and Construction, w: The Handbook of Data Mining, red. N. Ye, Lawrence Erlbaum Associates, Mahwah 2003.
  • Michalak K., Kwaśnicka H., Correlation-based feature selection strategy in classification problems, "International Journal of Applied Mathematics and Computer Science" 2006, nr 4.
  • Witten I.H., Frank E., Data Mining. Practical Machine Learning Tools and Techniques, Elsevier, San Francisco 2005.
  • Yu L., Liu H., Feature Selection for High-Dimensional Data: A Fast Correlation- Based Filter Solution, Proceedings of The 20th International Conference on Machine Leaning 2003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171356941

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.