Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | nr 6(13) | 75--102
Tytuł artykułu

On the Ways of Formalization and Interpretation of the Notion of "Efficiency"- Introductory Remarks and some Examples

Warianty tytułu
O sposobach formalizacji i interpretacji pojęcia efektywności - wstępne rozważania i niektóre przykłady
Języki publikacji
In the paper we consider selected formal models, coming from the field of "pure" mathematics, as well as from some related areas, in which the notion "efficiency" appears. The presented essay may be seen as a continuation, development and (at the same time) specification of same ideas discussed in the previous article of the author: On manysideness, relativity and complexity of the "efficiency" (as a category) (in Polish: O wielostronności, relatywizmie i złożoności kategorii efektywności). In addition to the proposals formulated in the above cited paper (concerning the classification and explanation of various "kinds" of efficiency) we introduce some new ways of meaning of this term, which we suggest to call: (a) basis-type efficiency, (b) sup (inf)-type efficiency, we also define and shortly discuss the following three types of efficiency, related to partial (pre)orders and formal logics, (c) informative capacity (reflecting the "richness" of an information contained in formulas defining given order), (d) linear similarity - efficiency (expressing a "distance of the (pre)order from the linear part" of the order in mind), (e) logical efficiency. In the final part we put together (and compare) "official" terms denoting "efficiency" and related notions presently functioning in economics, management and praxeology. The further forms of the meaning of notion "efficiency" are discussed in the "twin" paper submitted for publication in the present issue of Mathematical Economics.(original abstract)
Opis fizyczny
  • Uniwersytet Ekonomiczny we Wrocławiu
  • Achiezer N. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Hafner. New York.
  • Alzaid A., Kim S., Proschan F. (1991). Laplace ordering and its applications. Journal of Applied Probability. Vol. 28. Pp. 116-130.
  • Arnold B. (1986). Majorization and the Lorenz Order: A Brief Introduction. Lecture Notes in Statistics. Springer-Verlag. Berlin-Heidelberg-New York-Tokyo.
  • Arrow K.J., Intriligator M.D. (Eds.). (1981). Handbook of Mathematical Economics. Vol. 1. North Holland. Amsterdam-New York-Oxford-Tokyo.
  • Birkhoff G. (1946). Tres observaciones sobre el algebra linear. Univ. Nac. Tucu án Rev. Ser. A5. Pp. 147-151.
  • Blackwell D. (1951). Comparison of Experiments. Proc. of the Second Berkeley Symp. On Math. Statistics and Probability, Univ. of California Press, Berkeley- Los Angeles. Pp. 93-102
  • Box E.P., Jenkins G.M. (1970). Time Series Analysis. Forecasting and Control. Holden-Day. San Francisco-Cambridge-London-Amsterdam.
  • Brocket P., Golden L. (1987). A class of utility functions containing all the common utility functions. Management Science. Vol. 33, No 8. Pp. 955-964.
  • Caballé J., Pomansky A. (1996). Mixed risk aversion. Journal of Economic Theory. Vol. 71. Pp. 485-513.
  • CIMA Official Terminology (2005). CIMA Publishing. Oxford.
  • Dardanoni V. (1991). On the Lorenz curve ordering of discounted streams of income. Bulletin of Economic Research. Vol. 43. Pp. 293-296.
  • Denuit M., Lefèvre C., Scarsini M. (2001). On s-convexity and risk aversion. Theory and Decision. Vol. 50. Pp. 239-249.
  • Denuit M., Vermandele C. (1999). Lorenz and excess wealth orders. With applications in reinsurance theory. Scand. Actuarial Journal. No 2. Pp. 170-185.Dudycz T. (Ed.). (2005). Efektywność - rozważania nad istotą i pomiarem. Prace Naukowe Akademii Ekonomicznej nr 1060. Wydawnictwo Akademii Ekonomicznej. Wrocław.
  • Duffie D. (1992). Dynamic Asset Pricing Theory. Princeton University Press. Princeton.
  • Engelking R. (1968). Zarys topologii ogólnej. PWN. Warszawa.
  • Fama E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance. Vol. 25. Pp. 384-418.
  • Feller W. (1969). Wstęp do rachunku prawdopodobieństwa. T. 2. PWN. Warszawa.
  • Fölmer H., Schied A. (2002). Stochastic Finance. An Introduction in Discrete Time. Walter de Gruyter. Berlin-New York.
  • Goovaerts M.J., Kaas R., Van Heerwaarden A.E., Bauwelinckx T. (1990). Effective Actuarial Methods. North Holland. Amsterdam-New York-Oxford-Tokyo.
  • Kamae T., Krengel U., O'Brien G.L. (1977). Stochastic inequalities on partially ordered spaces. Annals of Probability. Vol. 5. Pp. 899-912.
  • Kimball M.S. (1993). Standard risk aversion. Econometrica. Vol. 61. Pp. 589-611.
  • Kolm S.-Ch. (1976). Unequal inequalities. Journal of Economic Theory. Vol. 12. Pp. 416-442.
  • Kuratowski K. (1962). Wstęp do teorii mnogości i topologii. PWN. Warszawa.
  • La Mure P. (1955). Beyond Desire. Random House. New York.
  • Le Breton M. (1991). Stochastic orders in welfare economics. In: K. Mosler,
  • M. Scarsini (Eds.). Stochastic Orders and Decision Under Risk. Inst. of Math.
  • Stat. Lecture Notes Monograph Series. Vol. 19. Institute of Mathematical Statistics. Hayward, CA.
  • Levy H. (1992). Stochastic dominance and expected utility: Survey and analysis. Management Science. Vol. 38. Pp. 555-593.
  • Lipmann S.A., McCall J.J. (1981). The economics of uncertainty: Selected topics and probabilistic method. In: K.J. Arrow, M.D. Intriligator (Eds.). Handbook of Mathematical Economics. North Holland. Amsterdam-New York-Oxford- Tokyo.
  • Lucas R.E. (1972). Expectations and the neutrality of money. Journal of Economic Theory. Vol. 4. Pp. 103-124.
  • Marshall A.W., Olkin I. (1979). Inequalities: Theory of Majorization and Its Applications. Academic Press. New York.
  • Mlak W. (1970). Wstęp do teorii przestrzeni Hilberta. PWN. Warszawa.
  • Mosler K., Scarsini M. (1991). Some theory of stochastic dominance. In: K. Mosler, M. Scarsini (Eds.). Stochastic Orders and Decision under Risk. IMS Lecture Notes - Monograph Series. Hayward, CA. Vol. 19. Pp. 261-284.
  • Mosler K., Scarsini M. (Eds.). (1991). Stochastic Orders and Decision under Risk. IMS Lecture Notes - Monograph Series. Hayward, CA. Vol. 19.
  • Mostowski A., Stark M. (1968. Algebra liniowa. PWN. Warszawa.
  • Müller A. (1998). Stochastic orders generated by integrals: A unified study. Advances of Applied Probability. Vol. 29. Pp. 414-428.Muth J. (1961). Rational expectations and the theory of price movements. Econometrica. Vol. 25. Pp. 315-335.
  • Nermuth M. (1993). Different economic theories with the same formal structure: Risk. Income inequality. Information structures. In: W.E. Diewert,
  • K. Spremann. F. Stehling (Eds.). Mathematial Modelling in Economics. Essays in Honor of Wolfgang Eichhorn. Springer-Verlag. New York-Heidelberg- Berlin-Tokyo.
  • Nita B. (2010). Rola rachunkowości zarządczej we wspomaganiu zarządzania dokonaniami przedsiębiorstwa. Wydawnictwo Uniwersytetu Ekonomicznego. Wrocław.
  • O'Brian G.I. (1987). The comparison method for stochastic processas. Annals of Probability. Vol. 3. Pp. 80-88.
  • Pliska S. (1997). Introduction to Mathematical Finance: Discrete Time Models. Blackwell Publishing. Oxford.
  • Pszczołowski T. (1978). Mała encyklopedia prakseologii i teorii organizacji. Ossolineum. Wrocław.
  • Reuter H. Riedrich T. (1981). On maximal set of functions compatible with a partial ordering for distribution functions. Math. Operationsforsch Statist. Vol. 12. Pp. 597-605.
  • Robertson A.P., Robertson W.J. (1964). Topological Vector Spaces. Cambridge University Press. Cambridge.
  • Rolski T. (1976). Order Relations in the Set of Probability Distributions and Their Application in Queuing Theory. Dissertationes Mathematicae. Vol. 132. PAN. Warszawa-Wrocław.
  • Rolski T., Schmidli H., Schmidt V., Teugels J. (1998). Stochastic Processes for Insurance and Finance. J. Wiley & Sons. Chichester.
  • Rybicki W. (1998). Racjonalne oczekiwania. Prognozy i ryzyko w zagadnieniach mikroekonomicznych. Prace Naukowe Akademii Ekonomicznej nr 780. Wydawnictwo Akademii Ekonomicznej. Wrocław. Pp. 37-46.
  • Rybicki W. (2005a). Reprezentacje preferencji i modelowanie ryzyka. Prace Naukowe Akademii Ekonomicznej nr 857. Wydawnictwo Akademii Ekonomicznej. Wrocław. Pp. 148-175.
  • Rybicki W. (2005b). O wielostronności, relatywizmie i złożoności kategorii efektywności. In: T. Dudycz (Ed.). Efektywność - rozważania nad istotą i pomiarem. Prace Naukowe Akademii Ekonomicznej nr 1060. Wydawnictwo Akademii Ekonomicznej. Wrocław. Pp. 358-382.
  • Rybicki W. (2008). Uwagi o formalnych modelach racjonalnych oczekiwań. In: J. Pociecha (Ed.). Modelowanie i prognozowanie zjawisk społeczno-gospodarczych. Wydawnictwo Uniwersytetu Ekonomicznego. Kraków. Pp. 31-42.
  • Shaked M., Shanthikumar J.G. (1993). Stochastic Orders and Their Applications. Academic Press. Harcourt Brace & Co. Boston.
  • Shorrock A.F., Foster J.E. (1987). Transfer sensitive inequality measures. Rev. of Ec. Studies. Vol. 54. Pp. 485-497.Sikorski R. (1958). Funkcje rzeczywiste. T. 1. PWN. Warszawa.
  • Stoyan D. (1983). Comparison Methods for Queues and Other Stochastic Models. J. Wiley. Berlin-New York.
  • Szekli R. (1995). Stochastic Ordering and Dependence in Applied Probability. Springer-Verlag. New York-Berlin.
  • Urbanik K. (1967). Lectures on Prediction Theory. Lecture Notes in Mathematics. Springer-Verlag. Berlin-Heidelberg-New York. Vol. 44.
  • Wold H. (1938). A Study in the Analysis of Stationary Time Series. Almqvist- Wiksell. Stockholm.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.