Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | nr 8(15) | 63--82
Tytuł artykułu

Applications of Robust Statistics in the Portfolio Theory

Warianty tytułu
Języki publikacji
The appropriate selection of portfolio components and determining their weights have a significant influence on the later performance of the investor. The classical method of calculating the weights of individual components in mean variance portfolios is based on sample mean and sample covariance matrix, which are optimal when the data come from multivariate normal distribution. In practice, the distribution of stock returns is not a normal distribution and frequently (albeit to a small extent) is contaminated by outliers; therefore, theoretically, a better approach to determine optimal weights in a portfolio would be to apply robust estimation methods. The main contribution of this paper is to present the possibilities of applying robust statistics methods in the Markowitz portfolio theory. This article contains an overview of the most important robust estimators applied in the portfolio theory. All the methods have been grouped according to the method of determining the outliers and to the accepted disorder models. Moreover, it presents the relevant achievements to date and the results of empirical research in this field. It also shows the potential problems resulting from the practical application of the robust estimation in the rolling horizon.(original abstract)
Opis fizyczny
  • Uniwersytet Ekonomiczny we Wrocławiu
  • Alqallaf F.A., Konis K.P., Martin R.D., Zamar R.H. (2002). Scalable robust covariance and correlation estimates for data mining. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton. Alberta. Pp. 14-23.
  • Alqallaf F., Van Aelst S., Yohai V.J., Zamar R.H. (2009). Propagation of outliers in multivariate data. The Annals of Statistics. Vol. 37(1). Pp. 311-331.
  • Best M.J., Grauer R.R. (1991). On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results. The Review of Financial Studies. Vol. 4. Pp. 315-342.
  • Black F., Litterman R. (1992). Global portfolio optimization. Financial Analysts Journal. Vol. 48(5). Pp. 28-43.
  • Butler R.W., Davies P.L., Jhun M. (1993). Asymptotics for the minimum covariance determinant estimator. The Annals of Statistics. Vol. 21(3). Pp. 1385-1400.
  • Chilson J., Ng R., Wagner A., Zamar R. (2004). Parallel computation of high dimensional robust correlation and covariance matrix. In: Proceedings of the ACM SIGKDD. Pp. 533-538.
  • Chopra V.K., Ziemba W.T. (1993). The effect of errors in means, variances and covariances on optimal portfolio choice. The Journal of Portfolio Management. Vol. 19. Pp. 6-11.
  • Croux C. (1998). Limit behaviour of the empirical influence function of the median. Statistics and Probability Letters. Vol. 37. Pp. 331-340.
  • Davies P.L. (1987). Asymptotic behaviour of s-estimates of multivariate location parameters and dispersion matrices. The Annals of Statistics. Vol. 15. Pp. 1269-1292.
  • Davies P.L. (1992). The asymptotics of Rousseeuw's minimum volume ellipsoid estimator. The Annals of Statistics. Vol. 20. Pp. 1828-1843.
  • DeMiguel V., Nogales F.J. (2009). Portfolio selection with robust estimation. Operations Research. Vol. 57(3). Pp. 560-577.
  • DeMiguel V., Garlappi L., Uppal R. (2005). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies. Vol. 22(5). Pp. 1915-1953.
  • Donoho D.L. (1982). Breakdown Properties of Multivariate Location Estimators. Ph.D. qualifying paper. Harvard University.
  • Donoho D.L., Huber P.J. (1983). The notion of breakdown point. In: P.J. Bickel, K. Doksumand, J.L. Hodges (Eds.). A Festschrift for Erich Lehmann. Wadsworth. Belmont. CA. Pp. 157-184.
  • Donoho D.L., Gasko M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness. The Annals of Statistics. Vol. 20(4). Pp. 1803-1827.
  • Gnanadesikan R., Kettenring J.R. (1972). Robust estimates, residuals, and outlier detection with multiresponse data. Biometrics. Vol. 28. Pp. 81-124.
  • Hampel F.R. (1968). Contributions to the Theory of Robust Estimation. Ph.D. thesis. University of California. Berkeley.
  • Hampel F.R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics. Vol. 42. Pp. 1887-1896.
  • Hampel F.R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association. Vol. 69. Pp. 383-393
  • Huber P.J. (1981). Robust Statistics. John Wiley and Sons. New York.
  • Huber P.J., Ronchetti E.M. (2009). Robust Statistics. Wiley Series in Probability and Statistics. 2nd edition. John Wiley and Sons. New York.
  • Jagannathan R., Ma T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance. Vol. 58(4). Pp. 1651-1684.
  • Jobson J.D., Korkie B.M. (1980). Estimation for Markowitz efficient portfolios. Journal of the American Statistical Association. Vol. 75. Pp. 544-554.
  • Jorion P. (1986). Bayes-Stein estimation for portfolio analysis. The Journal of Financial and Quantitative Analysis. Vol. 21. Pp. 279-292.
  • Kent J.T., Tyler D.E. (1996). Constrained M-estimation for multivariate location and scatter. The Annals of Statistics. Vol. 24(3). Pp. 1346-1370.
  • Kent J.T., Tyler D.E. (2001). Regularity and uniqueness for constrained m-estimates and redescending m-estimates. Annals of Statistics. Vol. 29(1). Pp. 252-265.
  • Khan J.A., Van Aelst S., Zamar R.H. (2007). Robust linear model selection based on Least Angle Regression. Journal of the American Statistical Association. Vol. 102. Pp. 1289-1299.
  • Lauprete G.J. (2001). Portfolio Risk Minimization under Departures from Normality. Ph.D. thesis. Sloan School of Management, MIT. Cambridge.
  • Lopuhaa H.P. (1989). On the relation between S-estimators and M-estimators of multivariate location and covariance. The Annals of Statistics. Vol. 17. Pp. 1662-1683.
  • Lopuhaa H.P. (1991). Multivariate -estimators for location and scatter. The Canadian Journal of Statistics. Vol. 19. Pp. 307-321.
  • Lopuhaa H.P. (1992). Highly efficient estimators of multivariate location with high breakdown point. The Annals of Statistics. Vol. 20. Pp. 398-413.
  • Maronna R.A. (1976). Robust M-estimators of multivariate location and scatter. Annals of Statistics. Vol. 4. Pp. 51-67.
  • Maronna R.A., Martin R., Yohai V.J. (2006). Robust Statistics: Theory and Methods. John Wiley. New York.
  • Maronna R.A., Stahel W.A., Yohai V.J. (1992). Bias-robust estimators of multivariate scatter based on projections. Journal of Multivariate Analysis. Vol. 42. Pp. 141-161.
  • Maronna R., Yohai V. (1995). The behavior of the Stahel-Donoho robust multivariate estimator. Journal of the American Statistical Association. Vol. 90(429). Pp. 330-341.
  • Maronna R., Zamar R. (2002). Robust estimates of location and dispersion for highdimensional data sets. Technometrics. Vol. 44(4). Pp. 307-317.
  • Mendes B.V.M., Leal C.R.P. (2005). Robust multivariate modeling in finance. International Journal of Managerial Finance. Vol. 1(2). Pp. 95-106.
  • Michaud R. (1989). The Markowitz optimization enigma: Is "optimized" optimal? Financial Analysts Journal. Vol. 45. Pp. 31-42.
  • Papahristodoulou C., Dotzauer E. (2004). Optimal portfolios using linear programming models. The Journal of the Operational Research Society. Vol. 55. Pp. 1169-1177.
  • Perret-Gentil C., Victoria-Feser M.P. (2004). Robust Mean-Variance Portfolio Selection. FAME Research Paper 140. International Center for Financial Asset Management and Engineering. Geneva.
  • Rocke D.M. (1996). Robustness properties of S-estimators of multivariate location and shape in high dimension. The Annals of Statistics. Vol. 24. Pp. 1327-1345.
  • Roelant E., Van Aelst S., Willems G. (2009). The minimum weighted covariance determinant estimator. Metrika. Vol. 70(2). Pp. 177-204.
  • Rousseeuw P.J. (1984). Least median of squares regression. Journal of the American Statistical Association. Vol. 79. Pp. 871-880.
  • Rousseeuw P.J. (1985). Multivariate estimation with high breakdown point. In: W. Grossmann, G. Pflug, I. Vincze, W. Wertz (Eds.). Mathematical Statistics and Applications. Vol. B. Pp. 283-297.
  • Rousseeuw P.J., Leroy A.M. (1987). Robust Regression and Outlier Detection. John Wiley & Sons. New York.
  • Rousseeuw P.J., Yohai V.J. (1984). Robust regression by means of S-estimators. In: J. Franke, W. Hardle, R.D. Martin (Eds.). Robust and Nonlinear Time Series Analysis. Springer-Verlag. New York. Pp. 256-272.
  • Salibian-Barrera M., Van Aelst S., Willems G. (2006). PCA based on multivariate MMestimators with fast and robust bootstrap. Journal of the American Statistical Association. Vol. 101. Pp. 1198-1211.
  • Stahel W.A. (1981). Breakdown of Covariance Estimators. Res Rep 31. Fachgruppe für Statistik. E.T.H. Zurich
  • Tatsuoka K.S., Tyler D.E. (2000). The uniqueness of S- and M-Functionals under non-elliptical distributions. The Annals of Statistics. Vol. 28. Pp. 1219-1243.
  • Todorov V., Filzmoser P. (2009). An object oriented framework for robust multivariate analysis. Journal of Statistical Software. Vol. 32(3). Pp. 1-47.
  • Tyler D.E. (1994). Finite sample breakdown points of projection based multivariate location and scatter statistics. The Annals of Statistics. Vol. 22(2). Pp. 1024-1044.
  • Wang Z. (2005). A shrinkage approach to model uncertainty and asset allocation. The Review of Financial Studies. Vol. 18(2). Pp. 673-705.
  • Wang N., Raftery A.E. (2002). Nearest-neighbor variance estimation (NNVE): robust covariance estimation via nearest-neighbor cleaning. Journal of the American Statistical Association. Vol. 97(460). Pp. 994-1006.
  • Welsch R.E., Zhou X. (2007). Application of robust statistics to asset allocation models. REVSTAT - Statistical Journal. Vol. 5(1). Pp. 97-114.
  • Yohai V.J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics Vol. 15. Pp. 642-656.
  • Zhou X. (2006). Application of Robust Statistics to Asset Allocation Models. MSc. thesis. MIT.
  • Zuo Y. (2000). Multivariate monotone location estimators. Sankhyā: The Indian Journal of Statistics, Series A. Vol. 62(2). Pp. 161-177.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.