Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Survey sampling methods in economic and social research | 83--98
Tytuł artykułu

On some pseudo-EBLUP in the case of modeling longitudinal profiles

Warianty tytułu
Języki publikacji
Although in sample surveys the problem of estimation of population characteristics is usually the key issue, clients may also be interested in subpopulations characteristics. In some cases the model approach may not be preferred in practice due to the possibility of model misspecification what may imply bias of estimates. This is the reason why model-assisted approach giving e.g. design-consistent estimates (even in the case of model misspecification) may be in favour. In the paper model-assisted pseudo-empirical best linear unbiased predictor (pseudo-EBLUP) of the domain total for longitudinal data based on the special case of the General Linear Mixed Model (GLMM) with element and domain specific random components will be proposed.(author's abstract)
  • Uniwersytet Ekonomiczny w Katowicach
  • Bleuer S.R, Godbout S., Morin Y. (2007): Evaluation of Small Domain Estimators for the Survey of Employment Payroll and Flours. SSC Annual Meeting, Proceedings of the Survey Methods Section.
  • Das K., Jiang J., Rao J.N.K (2004): Mean Squared Error of Empirical Predictor. "The Annals of Statistics", Vol. 32, No. 2.
  • Datta G.S., Lahiri R (2000): A Unified Measure of Uncertainty of Estimated Best Linear Unbiased Predictors in Small Area Estimation Problems. "Statistica Sinica", No. 10.
  • Deville J.C., Särndal C.E. (1992): Calibration Estimators in Survey Sampling. "Journal of the American Statistical Association", No. 87.
  • Hedeker D., Gibbons R.D. (2006): Longitudinal Data Analysis. John Wiley & Sons, Hoboken, New Jersey.
  • Henderson C.R. (1950): Estimation of Genetic Parameters (Abstract). "Annals of Mathematical Statistics", No. 21.
  • Kackar R.N., Harville D.A. (1981): Unbiasedness of Two-stage Estimation and Prediction Procedures for Mixed Linear Models. "Communications in Statistics", Series A, No. 10.
  • Prasad N.G.N., Rao J.N.K. (1990): The Estimation of Mean the Mean Squared Error of Small Area Estimators. "Journal of the American Statistical Association", No. 85.
  • Prasad N.G.N., Rao J.N.K. (1999): On Robust Small Area Estimation Using a Simple Random Effects Model. "Survey Methodology", No. 25.
  • Royall R.M. (1976): The Linear Least Squares Prediction Approach to Two-stage Sampling. "Journal of the American Statistical Association", No. 71.
  • R Development Core Team (2009): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria., URL
  • Verbeke G., Molenberghs G. (2000): Linear Mixed Models for Longitudinal Data. Springer-Verlag, New York.
  • You Y., Rao J.N.K. (2002): A Pseudo-Empirical Best Linear Unbiased Prediction Approach to Small Area Estimation Using Survey Weights. "The Canadian Journal of Statistics", No. 30.
  • Żądło T. (2004): On Unbiasedness of Some EBLU Predictor. In: Ed. J. Antoch. Proceedings in Computational Statistics 2004. Physica-Verlag, Heidelberg- -New York.
  • Żądło T. (2009a): On Prediction of Domain Totals Based on Longitudinal Unbalanced Data. In: Survey Sampling in Economic and Social Research, positively reviewed, in printing.
  • Żądło T. (2009b): On MSE ofEBLUP. "Statistical papers", No. 50.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.