Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 16 | nr 2 | 163--182
Tytuł artykułu

An Approximation to the Optimal Subsample Allocation for Small Areas

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper develops allocation methods for stratified sample surveys in which small area estimation is a priority. We assume stratified sampling with small areas as the strata. Similar to Longford (2006), we seek efficient allocation that minimizes a linear combination of the mean squared errors of composite small area estimators and of an estimator of the overall mean. Unlike Longford, we define mean-squared error in a model-assisted framework, allowing a more natural interpretation of results using an intra-class correlation parameter. This allocation has an analytical form for a special case, and has the unappealing property that some strata may be allocated no sample. We derive a Taylor approximation to the stratum sample sizes for small area estimation using composite estimation giving priority to both small area and national estimation. (original abstract)
Opis fizyczny
  • University of Botswana
  • University of Botswana
  • University of Wollongong
  • BANKIER, M. D., (1988). Power Allocations: Determining Sample Sizes for Sub-national Areas. The American Statistician, 42(3):174-177.
  • BINMORE, K. G., (1982). Mathematical Analysis: A straightforward approach. Cambridge University Press, 2nd edition.
  • BROCK, D. B., FRENCH, D. K., PEYTON, B. W., (1980). Small Area Estimation: Empirical Evaluation of Several Estimators for Primary Sampling Units. In Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 766- 771.
  • DEMIDOVICH, B., editor, (1964). Problems in Mathematical Analysis. MIR Publishers.
  • ERICKSEN, E. P., (1973). Recent Developments in Estimation for Local Areas. In Proceedings of the Section on Social Statistics, American Statistical Association, pp. 37-41.
  • FULLER, W. A., (1999). Environmental Surveys Over Time. Journal of Agricultural, Biological and Environmental Statistics, 4: 331- 345.
  • GONZALEZ, M. E., (1973). Use and Evaluation of Synthetic Estimates. In Proceedings of the Section on Social Statistics, American Statistical Association, pp. 33-36.
  • HIDIROGLOU, M. A., PATAK, Z., (2004). Domain estimation using linear regression. Survey Methodology, 30: 67-78.
  • LONGFORD, N. T. (2006). Sample Size Calculation for Small-Area Estimation. Survey Methodology, 32(1): 87-96.
  • MOLEFE, W. B., (2012). Sample Design for Small Area Estimation. PhD thesis, University of Wollongong,
  • MOLEFE, W. B., CLARK, R. G., (2015). Model-Assisted Optimal Allocation For Planned Domains Using Composite Estimation, Survey Methodology (forthcoming).
  • RAO, J. N. K., (2003). Small Area Estimation. Wiley.
  • ROYALL, R. M., (1973). Discussion of two Papers on Recent Developments in Estimation of Local Areas. In Proceedings of the Section on Survey Research Methods, American, Statistical Association, pp. 43-44.
  • SARNDAL, C., SWENSSON, B., WRETMAN, J., (1992). Model Assisted Survey Sampling. Springer-Verlag.
  • SCHAIBLE, W. L., (1978). Choosing Weight for Composite Estimators for Small Area Statistics. In Proceedings of the Section on Survey Research Methods, American Statistical 3 Association, pp. 741- 746.
  • SINGH, M. P., GAMBINO, J., MANTEL, H. J., (1994). Issues and Strategies for Small Area Data. Survey Methodology, 20(1): 3-22.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.