PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | nr II/1 | 197--208
Tytuł artykułu

Zastosowanie regulowanego deficytu nawadniania (RDI) w pojemnikowej uprawie krzewów ozdobnych

Treść / Zawartość
Warianty tytułu
Application of Regulated Deficit Irrigation (RDI) in Container Production of Ornametal Shrubs
Języki publikacji
PL
Abstrakty
Nawadnianie w szkółkach roślin ozdobnych ze względu na specyfikę produkcji i różnorodność uprawianych gatunków, wymaga dużych ilości wody. Niedostosowanie natężenia nawodnienia do potrzeb wodnych roślin jest przyczyną pogorszenia ich jakości i wymaga dużych nakładów pracy związanych z kontrolą wzrostu. Odpowiednie nawadnianie umożliwia regulację wzrostu i rozwoju roślin, zmniejszenie zużycia wody oraz kosztów związanych z nakładem pracy. W konsekwencji może istotnie wpływać na poprawę konkurencyjności szkółki, a także ograniczać zagrożenie ekologiczne spowodowane nieracjonalnie wysokim wykorzystaniem naturalnych zasobów wodnych. Regulowany deficyt nawadniania (Regulated Deficit Irrigation RDI), to metoda polegająca na ograniczeniu lub całkowitym zaprzestaniu nawadniania w określonej fazie rozwojowej roślin, w sposób nie powodujący ich uszkodzeń, pogorszenia jakości, kwitnienia, plonowania roślin lub trwałości pozbiorczej. Okresowy niedobór wody zastosowany w odpowiednim czasie i natężeniu umożliwia kontrolę wzrostu i rozwoju roślin, a ponadto pozwala znaczą- co ograniczyć zużycie wody w ich produkcji. Metoda ta jest skuteczna w ograniczaniu zużycia wody i poprawie plonowania wielu gatunków roślin sadowniczych. Przeprowadzone w ostatnich latach eksperymenty dowodzą pozytywnego wpływu stosowania kontrolowanych deficytów nawadniania w uprawie krzewów ozdobnych. W pracy omówiono fizjologiczne podstawy odporności drzew i krzewów ozdobnych na deficytowe nawadnianie oraz potencjalne możliwości wykorzystania metody regulowanego deficytu nawadniania (RDI) w produkcji szkółkarskiej. (abstrakt oryginalny)
EN
Irrigation of ornamental plants nurseries because of the diversity of species grown there, requires considerable water supplies. The using of inappropriate intensity of irrigation in relation to water needs of plants is the cause of the deterioration of their quality and requires a significant investment of work related to control of their growth. Suitable irrigation enables the control of plant growth and development and also the reduction of water resources used and the costs associated with the labour. As a consequence, it may affect significantly the improvement of the competitiveness of the nursery and the reduction of the environment hazard caused by unreasonably high use of natural water resources. Regulated Deficit Irrigation (RDI) is a method consists in limitation or in complete cessation of irrigation during the appropriate plant development phase, in a way that it does not cause damage, deterioration of quality, flowering, crop yield and post-harvest stability. The periodic water deficit applied at the appropriate time and with suitable intensity allows to control plant growth and development, and also reduces water using during their growing significantly. This method has proved to be effective in reducing water using and improving yield in many species of fruit plants. The potential application of RDI to ornamental shrubs growing has received less attention. However, in recent years conducted experiments have demonstrated the positive impact of the use of controlled deficit irrigation in the cultivation of this group of plants. This paper discusses the physiological basis of resistance of trees and shrubs on deficit irrigation, and the potential use of Regulated Deficit Irrigation method (RDI) in nursery production.(original abstract)
Rocznik
Numer
Strony
197--208
Opis fizyczny
Twórcy
  • Instytut Ogrodnictwa w Skierniewicach
  • Instytut Ogrodnictwa w Skierniewicach
Bibliografia
  • Acevedo-Opazo, C., Ortega-Farias, S., Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97, 956-964.
  • Bañón, S., Ochoa, J., Franco, J., Alarcón, J., Sánchez-Blanco, M. (2006). Hardening of oleander seedlings by deficit irrigation and low air humidity. Environmental and Experimental Botany, 56, 36-43.
  • Beeson, R.C., Brooks, J. (2008). Evaluation of a model based on reference crop evapotranspiration (ETo) for precision irrigation using overhead sprinklers during nursery production of Ligustrum japonica. Acta Horticulturae, 792, 85-90.
  • Cameron, R.W.F., Harrison-Murray, R.S., Scott, M.A. (1999). The use of controlled water stress to manipulate growth of container-grown Rhododendron cv Hoppy. Journal of Horticultural Science and Biotechnology, 74(2), 161-169.
  • Cameron, R.W.F., Wilkinson, S., Davies W.J. (2004). Regulation of plant growth in container-grown ornamentals through the use of controlled irrigation. Acta Horticulturae, 630, 305-312.
  • Cameron, R.W.F, Harrison-Murray, R.S., Atkinson, C.J., Judd, H.L. (2006). Regulated deficit irrigation - a means to control growth in woody ornamentals. Journal of Horticultural Science and Biotechnology, 81, 435-443.
  • Cameron, R.W.F., Harrison-Murray, R.S., Fordham, M., Wilkinson, S., Davies, W.J., Atkinson, C.J., Else, M. (2008). Regulated irrigation of woody ornamentals to improve plant quality and precondition against drought stress. Annals of Applied Biology, 15, 49-61.
  • Costa, J., Ortuño, M., Chaves, M. (2007). Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology, 49, 1421-1434.
  • Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, M.L. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany, 907-916.
  • Davies, W.J., Bacon, M.A., Sharp, R.G., Jones, H.G., Schofield, P., Atkinson, C.J., Grant, O.M., York, M. (2010). Enhancing the quality of hardy nursery stock and sustainability of the industry through novel water-saving techniques. Horticultural Development Company: HNS 97b Final report, 98-108.
  • Egea, G., Nortes, P.A, Domingo, R., Baille, A., Perez-Pastor, A., Gonzalez-Real, M.M. (2012). Almond agronomic response to long-term deficit irrigation applied since orchard establishment. Irrigation Science, 31, 445-454.
  • Einhorn, T., Caspari, H.W. (2004). Partial rootzone drying and deficit irrigation of 'Gala' apples in a semi-arid climate. Acta Horticulturae, 664, 197-204.
  • Fan, S., Blake, T.J., Blumwald, E. (1994). The relative contribution of elastic and osmotic adjustments to turgor maintenance of woody species. Physiologia Plantarum, 90, 408-413.
  • Fare, D., Gilliam, C.H., Keever, G.J. (1992). Monitoring irrigation at container nurseries. HortTechnology, 2, 75-78.
  • Fereres, E., Soriano, MA. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58, 147-159.
  • Franco, J.A., Martínez-Sánchez, J.J., Fernández, J.A., Bañón, S. (2006). Selection and nursery production of ornamental plants for landscaping and xerogardening in semi-arid environments. Journal of Horticultural Science and Biotechnology, 81, 3-17.
  • Garcı́ a-Tejero, I., Jiménez-Bocanegra, J.A., Martı́ nez, G., Romero, R., Durán-Zuazo, V.H., Muriel-Fernández, J.L. (2010). Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard (Citrus sinensis (L.) Osbeck, cv. Salustiano). Agricultural Water Management, 97, 614-622.
  • Gencoĝlan, C., Altunbey, H., Gencoğlan, S. (2006). Response of greenbean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation. Agricultural Water Management, 84, 274-280.
  • Gijón, M.C., Guerrero, J., Couceiro, J.F., Moriana, A. (2009). Deficit irrigation without reducing yield or nut splitting in pistachio (Pistacia vera cv.'Kerman' on Pistacia terebinthus L.). Agronomic Water Management, 96, 12-22.
  • Girona, J., Gelly, M., Mata, M., Arbones, A., Rufat, J., Marsal, J. (2005). Peach tree response to single and combined deficit irrigation regimes in deep soils. Agricultural Water Management, 72, 97-108.
  • Goldhamer, D.A., Salinas, M., Crisosto, C., Day, K.R., Soler, M., Moriana, A. (2002). Effects of regulated deficit irrigation and partial root drying on late harvest peach tree performance. Acta Horticulturae, 592, 343-350.
  • Grant, O.M, Davies, M.J, Longbottom, H., Atkinson, C.J. (2008). Irrigation scheduling and irrigation systems: optimising irrigation efficiency for container ornamental shrubs. Irrigation Science, 27, 139-153.
  • Guang-Cheng, S., Nac, L., Zhan-Yua, Z., Shuang-Ena, Y., Changren, C. (2010). Growth, yield and water use efficiency response of greenhouse-grown hot pepper under time-space deficit irrigation. Scientia Horticulturae, 126, 172-179.
  • Iniesta, F., Testi, L., Orgaz, F., Villalobos, F.J. (2009). The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. European Journal of Agronomy, 30, 258-265.
  • Intrigliolo, D.S., Bonet, L., Nortes, P.A., Puerto, H., Nicolas, E., Bartual, J. (2013). Pomegranate trees performance under sustained and regulated deficit irrigation. Irrigation Science, 31(5), 959-970.
  • Kang, S., Hu, X., Goodwin, I., Jerie, P. (2002). Soil water distribution, water use and yield response to partial rootzone drying under a shallow groundwater table condition in a pear orchard. Scientia Horticulturae, 92, 277-291.
  • Koniarski, M., Matysiak, B. (2013a). Growth and development of potted rhododendron cultivars 'Catawbiense Boursault' and 'Old Port' in response to regulated deficit irrigation. Journal of Horticultural Research, 21(1), 29-37.
  • Koniarski, M., Matysiak, B. (2013b). Effect of regulated deficit irrigation on growth, flowering and physiological responses of potted Syringa meyeri 'Palibin'. Acta Agrobotanica, 66(4), 73-80.
  • Leib, B.G., Caspari, H.W., Redulla, C.A., Andrews, P.K., Jabro, J.J. (2006). Partial rootzone drying and deficit irrigation of 'Fuji' apples in a semiarid climate. Irrigation Science, 24, 85-99.
  • Loveys, B.R., Stoll, M., Davies, W.J. (2004). Physiological approaches to enhance water use efficiency in agriculture: Exploiting plant signaling in novel irrigation practice. W: Bacon MA, ed. Water Use Efficiency in Plant Biology. Blackwell Publishing, UK, 113-141.
  • Marosz, A. (2013). Systemy nawadniania i zużycie wody w szkółkach roślin ozdobnych w Polsce na podstawie badań ankietowych. Infrastruktura i Ekologia Terenów Wiejskich, 3, 137-152.
  • Marsal, J., Girona, J., Merce, M. (1997). Leaf water relation parameters in almond compared to hazelnut trees during a deficit irrigation period. Journal of the American Society for Horticultural Science, 122, 582-587.
  • Marsal, J., Lopez, G., del Campo, J.,• Mata, M., Arbones, A., Girona, J. (2010). Postharvest regulated deficit irrigation in 'Summit' sweet cherry: fruit yield and quality in the following season. Irrigation Science, 28, 181-189.
  • Mounzer, O., Pedrero-Sacedo, F., Nortes, P.A., Bayona, J.M., Nicolas, E., Alarcon, J.J. (2013). Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation on Mandarin trees. Agricultural Water Management, 120, 23-29.
  • Mushtaq, S., Moghaddasi, M. (2011). Evaluating the potentials of deficit irrigation as an adaptive response to climate change and environmental demand. Environmental Science and Policy, 14, 1139-1150.
  • Pavel, E.W., Villiers, A.J. (2004). Responses of mango trees to reduced irrigation regimes. Acta Horticulturae, 646, 63-68.
  • Pulupol, LU., Behboudian, MH., Fisher KJ. (1996). Growth, yield and postharvest attributes of glasshouse tomatoes produced under deficit irrigation. Horticultural Science, 31, 926-929.
  • Romero, P., Martinez-Cutillas, A. (2012). The effects of partial root-zone irrigation and regulated deficit irrigation on the vegetative and reproductive development of field-grown Monastrell grapevines. Irrigation Science, 30, 377-396.
  • Sánchez-Blanco, J., Ferrández, T., Navarro, A., Bañon, S., Alarcón, J.J. (2004). Effects of irrigation and air humidity preconditioning on water relations, growth and survival of Rosmarinus officinalis plants during and after transplanting. Journal of Plant Physiology, 161, 1133-1142.
  • Santesteban, L.G., Miranda, C., Royo, J.B. (2011). Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'. Agricultural Water Management, 98, 1171-1179.
  • Svenson, S.E., Adams, D.R., Ticknor, R.L. (1997). Slow and steady. American Nurseryman, 177, 50-59.
  • Sharp, R.G., Else, M.A., Cameron, R.W., Davies, W.J. (2009). Water deficits promote flowering in Rhododendron via regulation of pre and post initiation development. Scientia Horticulturae, 120(4), 511-517.
  • Villar-Salvador, P., Planelles, R., Enrıquez, E., Penuelas Rubira, J.R. (2004). Nursery cultivation regimes, plant functional attributes, and field performance relationships in the Mediterranean oak Quercus ilex L. Forest Ecology and Management, 196, 257-266.
  • Weatherspoon, D.M., Harrell, C.C. (1980). Evaluation of drip irrigation for container production of woody landscape plants. HortScience, 15, 488-489.
  • Zollinger, N., Kjelgren, R., Cerny-Koenig, T., Kopp, K., Koenig, R. (2006). Drought responses of six ornamental herbaceous perennials. Scientia Horticulturae, 109(3), 267-274.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171402103

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.