PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 11 | nr 4 The Process of Firm Growth | 139--160
Tytuł artykułu

Regenerative Medicine as an Emergent Cluster in Tampere Region

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Clusters are important for regional economies and emergent clusters are in a key position, as a means of adding more diversification to the current economic activity by involving new technologies and industries. Science-based industries may be the most promising in this regard since they are encouraged to develop and enhance the economic imaginaries of territories under the umbrella of radical innovations or in the name of broadening the current economic model based on mostly traditional industries. Regenerative medicine (RM) could be an example of these so-called emergent clusters. Regenerative medicine is highly dependent on academic research, which means that local territories must fund the research in this field and, hence, they expect some returns as well. As territories do not typically have existing industries specifically in RM, these industries must emerge or expand from existing ones. Regenerative medicine involves a wide spectrum of different technologies and industries that are likely to form a cluster and benefit from it if successfully developed. The first aim of this paper is to show how some obstacles eventually impede the proper development of these emergent clusters. The second aim is to shed light on how innovations emerge in the cluster and what are the main implications for the territory. In this study, existing literature is used in order to describe the technology market and commercial aspects of the RM sector. Empirically this study is based on the emergent RM cluster in the region of Tampere in Finland. Analysis of 24 conducted interviews helps to contextualize the emergence of the RM cluster in Tampere, where academia is both the booster and the driver of the emergent RM cluster. Commercialization of research in the RM field is one of the goals at the university, even though there are no commercial outcomes yet available. This study contributes to the understanding of emergent cluster development in science-based industries in their embryonic and early stages. Major challenges are pointed out in an emergent cluster that calls for tailor-made socio-economic policies at the meso-level. Tailored policies matter in science-based clusters, and specific sectors in specific stages of development need specific policies in order to become matured clusters. (original abstract)
Klastry są istotnym elementem regionalnych gospodarek, a rozwijające się klastry mają szczególne znaczenie dla dywersyfikacji działalności gospodarczej poprzez nowe technologie i branże. Branże oparte na nauce są w tej dziedzinie szczególnie obiecujące dla tworzenia i wsparcia wizji rozwoju określonych terytoriów, dzięki innowacjom przełomowym lub wzbogaceniu obecnych modeli gospodarczych, działających w tradycyjnych sektorach. Branża medycyny regeneracyjnej (MR) stanowi przykład takich wyłaniających się klastrów. Branża ta jest silnie zależna od badań naukowych, co oznacza, że region musi inwestować w badania naukowe w tej dziedzinie, by spodziewać się określonego zwrotu z inwestycji. Regiony zazwyczaj nie posiadają rozwiniętych klastrów w dziedzinie MR, stąd branże te powinny wyłonić się z istniejących dziedzin działalności lub poszerzyć obecne sektory. Medycyna regeneracyjna angażuje szeroki zestaw technologii i sektorów, które mogą tworzyć klaster i korzystać z jego efektów, jeśli projekt odniesie sukces. W artykule zrealizowano dwa cele. Po pierwsze, przedstawiono bariery, które ograniczają rozwój młodych klastrów. Po drugie, określono w jaki sposób w klastrach tego rodzaju powstają innowacje i jakie jest ich znaczenie dla danego terytorium. Na podstawie przeglądu literatury przedstawiono rynek technologii i komercjalizacji w sektorze MR. Badanie empiryczne oparto na rozwijającym się klastrze MR w regionie Tampere, w Finlandii. Na podstawie 24 wywiadów przedstawiono kontekst tworzenia klastra w Tampere, gdzie sfera nauki inspiruje i stymuluje rozwój tej branży. Jednym z celów uniwersytetu jest komercjalizacja badań w dziedzinie MR, jakkolwiek na razie brak komercyjnych rezultatów. Badanie ma znaczenie dla zrozumienia rozwoju młodego klastra w branży opartej na nauce, w fazie zalążkowej i na wczesnych etapach rozwoju. Wskazano główne wyzwania dla powstającego klastra, które to wyzwania wymagają dostosowania polityki wsparcia na poziomie mezoekonomicznym. Dla klastrów opartych na wiedzy niezbędna jest ukierunkowana polityka, a określone sektory, na danym etapie rozwoju potrzebują specyficznych narzędzi polityki, aby osiągnąć fazę dojrzałości. (abstrakt oryginalny)
Twórcy
  • University of Tampere
  • Universitat Politecnica de Valencia
Bibliografia
  • Amabile, G., & Meissner, A. (2009). Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends in Molecular Medicine, 15(2), 59- 68.
  • Babtista, R. & Swann, P. (1998). Do firms in cluster innovate more? Research Policy, 27, 525-540.
  • Belussi, F. & Sedita, S. (2009). Life cycle vs. multiple path dependency in industrial districts. European Planning Studies, 17(4), 505- 528.
  • Eliasson, G. & Eliasson, Ä (1996). The biotechnological competence bloc. Revue d'Economie Industrielle, 78, 7-26.
  • Geels, F.W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy, 31, 1257-1274.
  • Gunter, K., Caplan, A., Mason, C., Salzman, R., Janssen, W., Nichols, K., Bouzas, L., Lanza, F., Levine, B., Rasko, J., Shimosaka, A. & Horwitz, E. (2010). Cell therapy medical tourism: time for action. Cytotherapy, 12, 965-968.
  • Harvey, O. (2010). Speculative stem cell futures: some prospective commercial models for induced pluripotent stem (iPS) cell based therapies. Journal of Futures Studies, 14(4), 85-96.
  • Heinonen, T. (2015). Management of innovation in academia: a case study in Tampere. Journal of Technology Management and Innovation, 10(2), 198- 210.
  • Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S. & Smits, R. (2007). Functions of innovation systems: a new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413-432.
  • Hellman, K. B., Johnson, P. C., Bertram, T. A., & Tawil, B. (2011). Challenges in tissue engineering and regenerative medicine product commercialization: building an industry. Tissue Engineering Part A, 17(1-2), 1-3.
  • Ianmarino, S. & McCann, P. (2006). The structure and evolution of industrial clusters: Transaction, technology and knowledge spillovers. Research Policy, 35, 1018-1036.
  • Johnson, P., Bertram, T., Tawil, B. & Hellman, K. (2011). Hurdles in tissue engineering/regenerative medicine product commercialization: a survey of North American academia and industry. Tissue Engineering: Part A, 17(1-2), 5-15.
  • Kotiranta, A., Nikulainen, T., Tahvanainen, A., Deschryvere, M. & Pajarinen, M. (2009). Evaluation of national innovation systems - key insights from the Finnish innoeval survey (Discussion papers No. 1196). Retrieved from https://www.etla.fi/wp- content/uploads/2012/09/dp1196.pdf
  • Kuhlmann, S. & Arnold, E. (2001). RNC in the Norwegian research and innovation system (Background report No 12 in the evaluation of the Research Council of Norway). Retrieved from https://www.regjeringen. no/globalassets/upload/kd/vedlegg/forskning/rapporter/2001-rcn-eval/2001-rcn- evaluation-background-report-no-12.pdf
  • Lindvall, O. & Hyun, I. (2009). Medical innovation versus stem cell tourism. Science, 324, 1664-1665.
  • Marshall, C., & Rossman, G.B. (1999). Designing qualitative research. London: Sage.
  • Martin, P. A., Coveney, C., Kraft, A., Brown, N., & Bath, P. (2006). Commercial development of stem cell technology: lessons from the past, strategies for the future. Regenerative Medicine, 1 (6), 801-807.
  • Mason, C. (2007). Regenerative medicine 2.0. Regenerative Medicine, 2 (1), 11-18.
  • Mason, C., Brindley, D., Culme-Seymour, E. & Davie, N. (2011). Cell therapy industry: Billion dollar global business with unlimited potential. Regenerative Medicine, 6(3), 265-272.
  • Mason, C. & Dunnil, P. (2008a). A brief definition of regenerative medicine. Regenerative Medicine, 3(1), 1-5.
  • Mason, C. & Dunnil, P. (2008b). The need for a regen industry voice. Regenerative Medicine, 3(5), 621- 631.
  • Mason, C. & Manzotti, E. (2009). Regen: the industry responsible for cell-based therapies. Regenerative Medicine 4(6), 783-785.
  • McMahon, D. & Thorsteinsdottir, H. (2013). Pursuing endogenous high-tech innovation in developing countries: A look at regenerative medicine innovation in Brazil, China and India. Research Policy, 42, 965- 974.
  • Mesimäki, K., Lindroos, B., Törnvall, J., Mauno, J., Lindqvist, C., Kontio, R., Miettinen, S. & Suuronen, R. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial surgery, 38, 201-209.
  • Messenger, M. & Tomlins, P. (2011). Regenerative medicine: A snapshot of the current regulatory environment and standards. Advanced Materials, 23 (12), H10-H17.
  • Metcalfe, J.S., James, A. & Mina, A. (2005). Emergent innovation systems and the delivery of clinical services: the case of intra-ocular lenses. Research Policy 34, 1283-1304.
  • Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: exploring tissue engineering. Research Policy, 31, 1389-1403.
  • Murray, F. (2004). The role of academic inventors in entrepreneurial firms: sharing the laboratory life. Research Policy, 33, 643-659.
  • Parson, A. (2008). Stem cell biotech: seeking a piece of the action. Cell, 132(4), 511-513.
  • Pavitt, K. (1984). Sectoral patterns of technical change: towards a taxonomy and a theory. Research Policy, 13, 343-373.
  • Polak, J., Bravery, C. & Prescott, C. (2010). Translation and commercialization of regenerative medicine. Journal of the Royal Society Interface, 7(53), S675-S676.
  • Porter, M. E. (1990). The competitive advantage of nations. With a new introduction by the author. New York: Palgrave.
  • Prescott, C. (2011). The business of exploiting induced pluripotent stem cells. Philosophical Transactions of the Royal Society B, 366(1575), 2323-2328.
  • Salter, B., Zhou, Y. & Datta, S. (2014). Health consumers and stem cell therapy innovation: markets, models and regulation. Regenerative Medicine, 9(3), 353-366.
  • Saxenian, A. (1994). Regional Advantage: culture and competition in Silicon Valley and Route 128. Cambridge. Massachusetts: Harvard University Press.
  • Sotarauta, M., & Mustikkamäki, N. (2015). Institutional entrepreneurship, power, and knowledge in innovation systems: institutionalization of regenerative medicine in Tampere, Finland. Environment and Planning C: Government and Policy, 33(2), 342-357.
  • Stoerring, D. (2007). Emergence and growth in high technology clusters (Ph.D. dissertation), Dept. Of Business Studies, Äalborg University.
  • Stoerring, D. & Dalum, B. (2007). Cluster emergence: a comparative study of two cases in North Jutland, Denmark. In P. Cooke & D. Schwartz (Eds.), Creative regions: technology, culture and knowledge entrepreneurship (pp. 127-147). London: Routledge.
  • Yin, R. K. (1989). Case study research: design and methods. Applied Social Research Series, Vol. 5. London: Sage.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171404077

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.