Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 7 | nr 1 | 21--32
Tytuł artykułu

Off-Line and Dynamic Production Scheduling - a Comparative Case Study

Treść / Zawartość
Warianty tytułu
Języki publikacji
A comprehensive case study of manufacturing scheduling solutions development is given. It includes highly generalized scheduling problem as well as a few scheduling modes, methods and problem models. The considered problem combines flexible job shop structure, lot streaming with variable sublots, transport times, setup times, and machine calendars. Tabu search metaheuristic and constraint programming methods have been used for the off-line scheduling. Two dynamic scheduling methods have also been implemented, i.e., dispatching rules for the completely reactive scheduling and a multi-agent system for the predictive-reactive scheduling. In these implementations three distinct models of the problem have been used, based on: graph representation, optimal constraint satisfaction, and Petri net formalism. Each of these solutions has been verified in computational experiments. The results are compared and some findings about advantages, disadvantages, and suggestions on using the solutions are formulated. (original abstract)
Opis fizyczny
  • Rzeszów University of Technology
  • Rzeszów University of Technology
  • [1] Pinedo M.L., Scheduling. Theory, Algorithms, and Systems, Springer-Verlag, New York, 2012.
  • [2] Calleja G., Pastor R., A dispatching algorithm for flexible job-shop scheduling with transfer batches: an industrial application, Prod. Plan. Control, 25, 2, 93-109, 2014.
  • [3] Defersha F.M., Chen M., Mathematical model and parallel genetic algorithm for hybrid flexible flow-shop lot streaming problem, Int. J. Adv. Manuf. Tech., 62, 1, 249-265, 2012.
  • [4] Demir Y., Isleyen S.K., An effective genetic algorithm for flexible job-shop scheduling with overlapping in operations, Int. J. Prod. Res., 52, 13, 39053921, 2014.
  • [5] Jun-jie B., Yi-guang G., Ning-sheng W., Dun-bing T., An Improved PSO Algorithm for Flexible Job Shop Scheduling with Lot-Splitting, International Workshop on Intelligent Systems and Applications, 2009.
  • [6] Al-Hinai N., ElMekkawy T.Y., Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm, Int. J. Prod. Econ., 132, 2, 279-291, 2011.
  • [7] Hasan S.M.K., Sarker R., Essam D., Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns, Int. J. Prod. Res., 49, 16, 4999-5015, 2011.
  • [8] He W., Sun D.-h., Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies, Int. J. Adv. Manuf. Tech, 66, 1, 501-514, 2013.
  • [9] Li J.-Q., Pan Q.-K., Tasgetiren M.F., A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities, Appl. Math. Model., 38, 3, 11111132, 2014.
  • [10] Wang S., Yu J., An effective heuristic for flexible job- shop scheduling problem with maintenance activities, Comput. Ind. Eng., 59, 3, 436-447, 2010.
  • [11] Zribi N., Borne P., Hybrid Genetic Algorithm for the Flexible Job-Shop Problem Under Maintenance Constraints, Advances in Natural Computation, Wang L., Chen K., Ong Y. [Eds.], LNCS 3612, Springer Berlin Heidelberg, 259-268, 2005.
  • [12] Bożejko W., Uchroński M., Wodecki M., Multi-machine scheduling problem with setup times, Archives of Control Science, 22, 4, 441-449, 2012.
  • [13] Groflin H., Pham D.N., Bürgy R., The flexible blocking job shop with transfer and set-up times, J. Comb. Optim., 22, 2, 121-144, 2011.
  • [14] Kunadilok J., Heuristics for Scheduling Reentrant Flexible Job Shops with Sequence-dependent Setup Times and Limited Buffer Capacities, PhD Thesis, Clemson University, 2007.
  • [15] Mousakhani M., Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness, Int. J. Prod. Res., 51, 12, 3476-3487, 2013.
  • [16] Rohaninejad M., Kheirkhah A., Fattahi P., Simultaneous lot-sizing and scheduling in flexible job shop problems, Int. J. Adv. Manuf. Tech., 78, 1, 1-18, 2015.
  • [17] Rossi A., Flexible job shop scheduling with sequence- dependent setup and transportation times by ant colony with reinforced pheromone relationships, Int. J. Prod. Econ., 152, 253-267, 2014.
  • [18] Sarin S.C., Jaiprakash P., Flow Shop Lot Streaming, Springer US, 2007.
  • [19] Aytug H., Lawley M. A., McKay K., Mohan S., Uz-soy R., Executing production schedules in the face of uncertainties: A review and some future directions, Eur. J. Oper. Res., 161, 1, 86-110, 2005.
  • [20] Ouelhadj D., Petrovic S., A survey of dynamic scheduling in manufacturing systems, J. Sched., 12, 4, 417-431, 2009.
  • [21] Liu N., Abdelrahman M., Ramaswamy, S., A Complete Multiagent Framework for Robust and Adaptable Dynamic Job Shop Scheduling, IEEE Trans. Syst., Man, Cybern., Part C: Applications and Reviews, 37, 5, 904-916, 2007.
  • [22] Lou P., Liu Q., Zhou Z., Wang H., Sun S.X., Multi-agent-based proactive-reactive scheduling for a job shop, Int. J. Adv. Manuf. Tech., 59, 1-4, 311-324, 2012.
  • [23] Laborie P., IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three Problems, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Hoeve W.-J., Hooker J.N. [Eds.], LNCS 5547, Springer Berlin Heidelberg, 148-162, 2009.
  • [24] Quintiq. World records: Flexible job shop scheduling problem, http: // [accessed on December 14, 2015].
  • [25] CPN Tools Homepage,, [accessed on December 14, 2015].
  • [26] Jensen K., Kristensen L.M., Coloured Petri Nets -Modelling and Validation of Concurrent Systems, Springer-Verlang Berlin Heidelberg, 2009.
  • [27] Zhang H., Gu M., Song X., Modeling and Analysis of Real-Life Job Shop Scheduling Problems by Petri nets, Simulation Symposium, ANSS 2008, 41st Annual, 279- 285, 2008.
  • [28] Aized T., Modelling and performance maximization of an integrated automated guided vehicle system using coloured Petri net and response surface methods, Comput. Ind. Eng., 57, 3, 822-831, 2009.
  • [29] JADE. Java Agent Development Framework,, [accessed on December 14, 2015].
  • [30] Leitäo P., Restivo F., ADACOR: A holonic architecture for agile and adaptive manufacturing control, Comput. Ind., 57, 2, 121-130, 2006.
  • [31] Nouiri M., Bekrar A., Jemai A., Niar S., Ammari A.C., An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem, J. Intell. Manuf., 1-13, 2015 [published online, DOI: 10.1007/s10845-015-1039-3].
  • [32] Bożek A., Using Petri nets, multi-agent techniques and computational intelligent methods in production planning and control (in Polish), PhD thesis, Rzeszów University of Technology, 2015.
  • [33] Glover F., Artificial intelligence, heuristic frameworks and tabu search, Managerial & Decision Economics, 11, 365-378, 1990.
  • [34] Watson J.-P., Beck J.C., Howe A.E., Whitley L.D., Problem difficulty for tabu search in job-shop scheduling, Artif. Intell., 143, 2, 189-217, 2003.
  • [35] Rossi F., van Beek P., Walsh T. [Eds.], Handbook of Constraint Programming, Elsevier, Pisa, Italy, 2006.
  • [36] Demir Y., Isleyen S.K., Evaluation of mathematical models for flexible job-shop scheduling problems, Appl. Math. Model., 37, 3, 977- 988, 2013.
  • [37] Leitäo P., Agent-based distributed manufacturing control: A state-of-the-art survey, Eng. Appl. Artif. Intel., 22, 7, 979-991, 2009.
  • [38] Sycara K.P., Multiagent systems, AI Magazine, 19, 2, 79-92, 1998.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.