Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 5 | 397--405
Tytuł artykułu

Window-Based Feature Extraction Framework for Multi-Sensor Data: A Posture Recognition Case Study

Warianty tytułu
Języki publikacji
The article introduces a novel mechanism for automatic extraction of features from streams of numerical data. It was originally designed for the purpose of processing multiple streams of readings generated by sensors in coal mines. The original research was conducted on methane concentration analysis in the DISESOR project. The article demonstrates an application of the elaborated mechanism for the case of tagging short series of readings from sensors that monitor activities and movements of firefighters during the action with labels corresponding to firefighter activities. The purpose of the experiment was to assess how the automatic feature extraction and construction of classifiers (without parameters tuning and without the use of classifier ensembles) can cope with the competition's task in comparison to other participants. (original abstract)
Słowa kluczowe
Opis fizyczny
  • Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
  • Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
  • ] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT '92, pages 144-152, New York, NY, USA, 1992. ACM.
  • G. E. P. Box and G. Jenkins. Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated, 1990.
  • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
  • L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
  • W. Cheng, K. Dembczynski, and E. Hüllermeier. Graded multilabel classification: The ordinal case. In J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th International Conference on Machine Learning, June 21-24, 2010, Haifa, Israel, pages 223-230. Omnipress, 2010.
  • J. Coble and D. J. Cook. Real-time learning when concepts shift. In J. N. Etheredge and B. Z. Manaris, editors, FLAIRS Conference, pages 192-196. AAAI Press, 2000.
  • C. Cornelis, R. Jensen, G. H. Martín, and D. Ślęzak. Attribute selection ´ with fuzzy decision reducts. Inf. Sci., 180(2):209-224, 2010.
  • J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun. ACM, 51(1):107-113, Jan. 2008.
  • J. Fürnkranz, E. Hüllermeier, E. Loza Mencía, and K. Brinker. Multilabel classification via calibrated label ranking. Mach. Learn., 73(2):133-153, Nov. 2008.
  • M. Grzegorowski. Scaling of complex calculations over big data-sets. In D. Sl˛ezak, G. Schaefer, S. T. Vuong, and Y. Kim, editors, ´ Active Media Technology - 10th International Conference, AMT 2014, Warsaw, Poland, August 11-14, 2014. Proceedings, volume 8610 of Lecture Notes in Computer Science, pages 73-84. Springer, 2014.
  • A. Janusz, A. Krasuski, S. Stawicki, M. Rosiak, D. Sl˛ezak, and H. S. ´ Nguyen. Key risk factors for polish state fire service: a data mining competition at knowledge pit. In M. Ganzha, L. A. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, September 7-10, 2014., pages 345-354, 2014.
  • A. Janusz and D. Ślęzak. Rough set methods for attribute clustering and ´ selection. Appl. Artif. Intell., 28(3):220-242, Mar. 2014.
  • A. Janusz and S. Stawicki. Applications of approximate reducts to the feature selection problem. In Rough Sets and Knowledge Technology - 6th International Conference, RSKT 2011, Banff, Canada, October 9-12, 2011. Proceedings, pages 45-50, 2011.
  • W. Jiang, Z. W. Ras, and A. Wieczorkowska. Clustering driven cascade classifiers for multi-indexing of polyphonic music by instruments. In Z. W. Ras and A. Wieczorkowska, editors, Advances in Music Information Retrieval, volume 274 of Studies in Computational Intelligence, pages 19-38. Springer, 2010.
  • K. Krenski, A. Krasuski, M. Szczuka, and S. Łazowy. Granular ´ knowledge discovery framework for fire and rescue reporting system. Intelligent Decision Technologies, pages 1-12, 2014.
  • M. Meina, A. Janusz, K. Rykaczewski, D. Ślęzak, B. Celmer, and ´ A. Krasuski. Tagging firefighter activities at the emergency scene: Summary of aaia'15 data mining competition at Knowledge Pit. In M. Ganzha, L. A. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, 2015. In print September 2015.
  • H. S. Nguyen. On efficient handling of continuous attributes in large data bases. Fundam. Inf., 48(1):61-81, Oct. 2001.
  • H. S. Nguyen. On exploring soft discretization of continuous attributes. In S. K. Pal, L. Polkowski, and A. Skowron, editors, Rough-Neural Computing, Cognitive Technologies, pages 333-350. Springer Berlin Heidelberg, 2004.
  • S.-H. Park and J. Fürnkranz. Multi-label classification with contraints. In Proceedings of the workshop on Preference Learning at ECML PKDD'08, Antwerp, Belgium, 2008.
  • S.-H. Park and J. Fürnkranz. Multi-Label Classification with Label Constraints. Technical report, Knowledge Engineering Group, TU Darmstadt, 2008.
  • T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. Addressing big data time series: Mining trillions of time series subsequences under dynamic time warping. ACM Trans. Knowl. Discov. Data, 7(3):10:1-10:31, Sept. 2013.
  • J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification. Mach. Learn., 85(3):333-359, Dec. 2011.
  • J. Read, A. Puurula, and A. Bifet. Multi-label classification with metalabels. In R. Kumar, H. Toivonen, J. Pei, J. Z. Huang, and X. Wu, editors, 2014 IEEE International Conference on Data Mining, Shenzhen, China, December 14-17, 2014, pages 941-946. IEEE, 2014.
  • D. Ślęzak and V. Eastwood. Data warehouse technology by infobright. ´ In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD '09, pages 841-846, New York, NY, USA, 2009. ACM.
  • D. Ślęzak and A. Janusz. Ensembles of bireducts: Towards robust ´ classification and simple representation. In T. Kim, H. Adeli, D. Sl˛ezak, ´ F. E. Sandnes, X. Song, K. Chung, and K. P. Arnett, editors, Future Generation Information Technology - Third International Conference, FGIT 2011 in Conjunction with GDC 2011, Jeju Island, Korea, December 8-10, 2011. Proceedings, volume 7105 of Lecture Notes in Computer Science, pages 64-77. Springer, 2011.
  • D. Ślęzak, A. Janusz, W. Świeboda, H. S. Nguyen, J. G. Bazan, ´ and A. Skowron. Semantic analytics of pubmed content. In Information Quality in e-Health - 7th Conference of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2011, Graz, Austria, November 25-26, 2011. Proceedings, pages 63-74, 2011.
  • M. S. Szczuka and D. Sl˛ezak. How deep data becomes big data. In ´ Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS, Edmonton, Alberta, Canada, June 24-28, 2013, pages 579-584, 2013.
  • A. Wieczorkowska, J. Wróblewski, D. Ślęzak, and P. Synak. Problems ´ with automatic classification of musical sounds. In Intelligent Information Processing and Web Mining, Proceedings of the International IIS: IIPWM'03 Conference held in Zakopane, Poland, June 2-5, 2003, pages 423-430, 2003.
  • E. S. Xioufis, M. Spiliopoulou, G. Tsoumakas, and I. Vlahavas. Dealing with concept drift and class imbalance in multi-label stream classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAI'11, pages 1583-1588. AAAI Press, 2011.
  • Y. Yang and S. Gopal. Multilabel classification with meta-level features in a learning-to-rank framework. Machine Learning, 88(1-2):47-68, 2012
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.