PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 5 | 461--469
Tytuł artykułu

Simulated Annealing with Constraints Aggregation for Control of the Multistage Processes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article the control and optimization of multistage technological processes were discussed. In the presented research, it was assumed, that in the complex technological processes, the multistage differential-algebraic constraints with unknown consistent initial conditions were considered. To rewrite the infinite-dimensional optimal control problem into the finitedimensional optimization task, the direct shooting method was applied. Simulated annealing algorithm was proposed as the method for solving nonlinear optimization problem with constraints. Stretching function was used to allow us to locate the globally optimal solution. The complex process constraints were treated using constraints aggregation methods. The presented methodology was tested with optimal control problem of the two-reactors system. The numerical simulations were executed in MATLAB environment using Wroclaw Center for Networking and Supercomputing.(original abstract)
Rocznik
Tom
5
Strony
461--469
Opis fizyczny
Twórcy
autor
  • Department of Control Systems and Mechatronics Wrocław University of Technology, Poland
  • Department of Control Systems and Mechatronics, Wrocław University of Technology, Poland
Bibliografia
  • J.R. Banga, E. Balsa-Canto, C.G. Moles, A.A. Alonso. 2005. Dynamic optimization of bioprocesses: Efficient and robust numerical strategies. Journal of Biotechnology. 117:407-419, http://dx.doi.org/10.1016/j.jbiotec.2005.02.013
  • J.T. Betts. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898718577
  • L.T. Biegler. 2010. Nonlinear Programming. Concepts, Algorithms and Applications to Chemical Processes. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9780898719383
  • L.T. Bielger, S. Campbell, V. Mehrmann. 2012. DAEs, Control, and Optimization. Control and Optimization with Differential-Algebraic Constraints. SIAM, Philadelphia, http://dx.doi.org/10.1137/9781611972252.ch1
  • K.F. Bloss, L.T. Biegler, W.E. Schiesser. 1999. Dynamic process optimization through adjoint formulations and constraint aggregation. Ind. Eng. Chem. Res. 38:421-432, http://dx.doi.org/10.1021/ie9804733
  • K.E. Brenan, S.L. Campbell, L.R. Petzold. 1996. Numerical Solution of Initial- Value Problems in Differential-Algebraic Equations. SIAM, Philadelphia, http://dx.doi.org/10.1137/1.9781611971224
  • M. Diehl, H.G. Bock, J.P. Schl¨oder, R. Findeisen, Z. Nagy, F. Allg¨ower. 2002. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control. 12:577-585, http://dx.doi.org/10.1016/S0959-1524(01)00023-3
  • P. Drąg, K. Styczeń. 2012. A Two-Step Approach for Optimal Control of Kinetic Batch Reactor with electroneutrality condition. Przeglad Elektrotechniczny. 6:176-180.
  • S. El Moumen, R. Ellaia, R. Aboulaich. 2011. A new hybrid method for solving global optimization problem. Applied Mathematics and Computation. 218:3265-3276, http://dx.doi.org/10.1016/j.amc.2011.08.066
  • R. Faber, T. Jockenhovel, G. Tsatsaronis. 2005. Dynamic optimization with simulated annealing. Computers and Chemical Engineering. 29:273- 290, http://dx.doi.org/10.1016/j.compchemeng.2004.08.020
  • S. Fidanova, M. Paprzycki, O. Roeva. 2014. Hybrid GA-ACO Algorithm for a Model Parameters Identification Problem. 2014 Federated Conference on Computer Science and Information Systems. 413-420, http://dx.doi.org/10.15439/2014F373
  • R. Fletcher, S. Leyffer. 2002. Nonlinear programming without a penalty function. Mathematical Programming. 91:239-269, http://dx.doi.org/10.1007/s101070100244
  • M. Gerdts. 2003. Direct Shooting Method for the Numerical Solution of Higher-Index DAE Optimal Control Problems. Journal of Optimization Theory and Applications. 117:267-294, http://dx.doi.org/10.1023/A:1023679622905
  • M. Jeon. 2005. Parallel optimal control with multiple shooting, constraints aggregation and adjoint methods. J. Appl. Math. and Computing. 19:215-229, http://dx.doi.org/10.1007/BF02935800
  • M. Ji, Z. Jin, H. Tang. 2006. An improved simulated annealing for solving the linear constrained optimization problems. Applied Mathematics and Computation. 183:251-259, doi:10.1016/j.amc.2006.05.070
  • M. Kwiatkowska. 2015. DAEs method for time-varying indoor air parameters evaluation. In: A. Kotowski, K. Piekarska, B. Kaźmierczak (eds.) Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska T. 6. Wrocław 2015, pp. 214-220.
  • D.B. Leineweber, I. Bauer, H.G. Bock, J.P. Schl¨oder. 2003. An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects. Computers and Chemical Engineering. 27:157-166, http://dx.doi.org/10.1016/S0098- 1354(02)00158-8
  • J. Nocedal, S.J. Wright. 2006. Numerical Optimization. Second Edition. Springer, New York, http://dx.doi.org/10.1007/978-0-387-40065-5
  • K.E. Parsopoulos, V.P. Plagianakos, G.D. Mogoulas, M.N. Vrahatis. 2001. Improving the particle swarm optimizer by function "stretching", in: N. Hadjisavvas, P.M. Pardalos (eds.), Advances in Convex Analysis and Global Optimization, Kluwer Academic Publishers. 445-457, http://dx.doi.org/10.1007/978-1-4613-0279-7 28
  • K.E. Parsopoulos, V.P. Plagianakos, G.D. Mogoulas, M.N. Vrahatis. 2001. Objective function "stretching" to alleviate convergence to local minima. Nonlinear Analysis. 47:3419-3424, http://dx.doi.org/10.1016/S0362-546X(01)00457-6
  • K.E. Parsopoulos, M.N. Vrahatis. 2002. Particle Swarm Optimization Method for Constrained Optimization Problems, in: P. Sincak et al.(Eds.), Intelligent Technologies - Theory and Applications: New Trends in Intelligent Technologies, IOS Press, pp. 214-220.
  • E. Rafajłowicz, K. Styczeń, W. Rafajłowicz. 2012. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. Int. J. Appl. Math. Comput. Sci. 22:313-326, http://dx.doi.org/10.2478/v10006-012-0023-8
  • D.F. Rogers, R.D. Plante, R.T. Wong, J.R. Evans. 1991. Aggregation and disaggregation techniques and methodology in optimization. Operations Research. 39:553-582, http://dx.doi.org/10.1287/opre.39.4.553
  • V.S Vassiliadis, R.W.H. Sargent, C.C. Pantelides. 1994. Solution of a Class of Multistage Dynamic Optimization Problems. 1. Problems without Path Constraints. Ind. Eng. Chem. Res. 33:2111-2122, http://dx.doi.org/10.1021/ie00033a014
  • Y.-J. Wang, J.-S. Zhang. 2007. An efficient algorithm for large scale global optimization of continuous functions. Journal of Computational and Applied Mathematics. 206:1015-1026, http://dx.doi.org/10.1016/j.cam.2006.09.006
  • K.F.C. Yiu, Y. Liu, K.L. Teo. 2004. A hybrid descent method for global optimization. Journal of Global Optimization. 28:229-238, http://dx.doi.org/10.1023/B:JOGO.0000015313.93974.b0
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171422440

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.