Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 5 | 579--588
Tytuł artykułu

Hybrid Metaheuristic for Portfolio Selection: Comparison with an Exact Solver and Search Space Analysis

Warianty tytułu
Języki publikacji
In this paper we use a metaheuristic approach to solve the Portfolio Selection problem, in a constrained formulation which is NP-hard and difficult to be solved by standard optimization methods. We are comparing the algorithm's performances with an exact solver and we are showing that different mathematical formulations lead to different algorithm's behaviour. Results show that our approach can be efficiently used to solve the problem at hand, and that a sound basin of attraction analysis may help developers and practitioners to design the experimental analysis.(original abstract)
Opis fizyczny
  • Universitá Ca' Foscari, Italia
  • R. Armañanzas and J.A. Lozano. A multiobjective approach to the portfolio optimization problem. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 2, pages 1388-1395, 2005.
  • A.Roli. A note on a model of local search. Technical Report TR/IRIDIA/2004/23.01, IRIDIA, ULB, Belgium, 2004.
  • M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring metaheuristics. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pages 11-18. Morgan Kaufmann Publishers, 2002.
  • C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.
  • T.J. Chang, N. Meade, J.E. Beasley, and Y.M. Sharaiha. Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13):1271-1302, 2000.
  • Y. Crama and M. Schyns. Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150:546-571, 2003.
  • L. Di Gaspero, G. di Tollo, A. Roli, and A. Schaerf. Hybrid local search for constrained financial portfolio selection problems. In Proceedings of Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 44-58, 2007.
  • G. di Tollo and A. Roli. Metaheuristics for the portfolio selection problem. International Journal of Operations Research, 5(1):443-458, 2008.
  • G. di Tollo, T. Stützle, and M. Birattari. A metaheuristic multicriteria optimisation approach to portfolio selection. Journal of Applied Operational Research, 6(4):222-242, 2014.
  • M. Dorigo, L. M. Gambardella, M. Middendorf, and T. Stützle, editors. Special Section on "Ant Colony Optimization". IEEE Transactions on Evolutionary Computation, 6(4), 317-365, 2002.
  • G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1):161-175, 1990.
  • G. Dueck and P. Winker. New concepts and algorithms for portfolio choice. Applied Stochastic Models and Data Analysis, 8:159-178, 1992.
  • A. Fernandez and S. Gomez. Portfolio selection using neural networks. Computers & Operations Research, 34:1177-1191, 2007.
  • R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press/Brooks/Cole Publishing Company, 2002.
  • L. Di Gaspero, G. di Tollo, A. Roli, and A. Schaerf. Hybrid metaheuristics for constrained portfolio selection problems. Quantitative Finance, 11(10):1473-1487, 2011.
  • D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27:1-33, 1983.
  • P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press, 2005.
  • H. Hoos and T. Stützle. Stochastic Local Search Foundations and Applications. Morgan Kaufmann Publishers, 2005.
  • S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
  • R. Mansini, W. Ogryczak, and M.G. Speranza. LP solvable models for portfolio optimization: a classification and computational comparison. IMA Journal of Management Mathematics, 14(3):187-220, 2003.
  • R. Mansini and M.G. Speranza. Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research, 114(2):219-233, 1999.
  • D. Maringer. Portfolio Management with heuristic optimization. Springer, 2005.
  • D. Maringer and P. Winker. Portfolio optimization under different risk constraints with modified memetic algorithms. Technical Report 2003-005E, University of Erfurt, Faculty of Economics, Law and Social Sciences, 2003.
  • H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77- 91, 1952.
  • H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77- 91, 1952.
  • R. Moral-Escudero, R. Ruiz-Torrubiano, and A. Suárez. Selection of optimal investment with cardinality constraints. In Proceedings of the IEEE World Congress on Evolutionary Computation, pages 2382-2388, 2006.
  • S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Proceedings of the 2nd International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 273-287, 2005.
  • E. Rolland. A tabu search method for constrained real number search:applications to portfolio selection. Technical report, Department of Accounting and Management Information Systems, Ohio State University, Columbus. U.S.A., 1997.
  • A. Schaerf. Local search techniques for constrained portfolio selection problems. Computational Economics, 20(3):177-190, 2002.
  • M.G. Speranza. A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers & Operations Research, 23(5):433-441, 1996.
  • F. Streichert, H. Ulmer, and A. Zell. Comparing discrete and continuous genotypes on the constrained portfolio selection problem. In Proceedings of Genetic and Evolutionary Computation Conference, volume 3103 of LNCS, pages 1239-1250, 2004.
  • M. Yokoo. Why adding more constraints makes a problem easier for hill-climbing algorithms: Analyzing landscapes of CSPs. In Proceedings of the Third Conference on Principles and Practice of Constraint Programming, pages 356-370, 1997.
Typ dokumentu
Identyfikator YADDA

Zgłoszenie zostało wysłane

Zgłoszenie zostało wysłane

Musisz być zalogowany aby pisać komentarze.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.